We propose a multiphase distribution locational marginal price (DLMP) model. Compared to existing DLMP models in the literature, the proposed model has three distinctive features: i) It provides a linear approximation of relevant DLMP components which captures the global behavior of nonlinear functions; ii) it decomposes into most general components, i.e., energy, loss, congestion, voltage violations; and iii) it incorporates both wye and delta grid connections along with unbalanced loadings. The developed model is tested on a benchmark IEEE 13-bus unbalanced distribution system with the inclusion of distributed generators (DGs).
more »
« less
Decomposition and Equilibrium Achieving Distribution Locational Marginal Prices using Trust-Region Method
We propose a new distribution locational marginal price (DLMP) model which is based on a linearized variant of the global energy balance formulation along with trust-region based solution methodology. Compared to existing DLMP works in the literature, the proposed DLMP model has shown to depict the following features: i) It decomposes into most general components, i.e., energy, loss, congestion and voltage; ii) it presents market equilibrium conditions; and ii) it is capable of achieving an efficient flexibility resource allocation in local day-ahead distribution grid markets. The developed model is tested first on a benchmark IEEE 33-bus distribution grid and then on much larger grids with the inclusion of dispatch from flexible loads (FLs) and distributed generators (DGs).
more »
« less
- Award ID(s):
- 1851602
- PAR ID:
- 10079396
- Date Published:
- Journal Name:
- IEEE Transactions on Smart Grid
- ISSN:
- 1949-3053
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2].more » « less
-
The NIST Transactive Energy (TE) Modeling and Simulation Challenge for the Smart Grid (Challenge) spanned from 2015 to 2018. The TE Challenge was initiated to identify simulation tools and expertise that might be developed or combined in co-simulation platforms to enable the evaluation of transactive energy approaches. Phase I of the Challenge spanned 2015 to 2016, with team efforts that improved understanding of TE concepts, identified relevant simulation tools and co-simulation platforms, and inspired the development of a TE co-simulation abstract component model that paved the way for Phase II. The Phase II effort spanned Spring 2017 through Spring 2018, where the teams collaboratively developed a specific TE problem scenario, a common grid topology, and common reporting metrics to enable direct comparison of results from simulation of each team's TE approach for the defined scenario.This report presents an overview of the TE Challenge, the TE abstract component model, and the common scenario.It also compiles the individual Challenge participants' research reports from Phase II. The common scenario involves a weather event impacting a distribution grid with very high penetration of photovoltaics, leading to voltage regulation challenges that are to be mitigated by TE methods. Four teams worked with this common scenario and different TE models to incentivize distributed resource response to voltage deviations, performing these simulations on different simulation platforms. A fifth team focused on a co-simulation platform that can be used for online TE simulations with existing co-simulation components. The TE Challenge Phase II has advanced co-simulation modeling tools and platforms for TE system performance analysis, developed a referenceable TE scenario that can support ongoing comparative simulations, and demonstrated various TE approaches for managing voltage on a distribution grid with high penetration of photovoltaics.more » « less
-
The integration of electric vehicles (EVs) into the electric power distribution system poses numerous challenges and opportunities for optimizing energy management and system operations. Electric vehicle grid interfaces (EVGIs), essentially bidirectional power converters, allow for charging/grid-to-vehicle (G2V) and discharging/vehicle-to-grid (V2G) power transfers. A power dispatch estimation (PDE) model for V2G, based on availability of EVs in a distribution system and capabilities of the distribution system, is needed to assist in grid operations. This paper presents the development of a PDE model based on nodal power flows to capture the complex spatiotemporal dependencies inherent in G2V and V2G patterns. The hierarchical structure of a distribution system, feeder to EVGI node, is taken into consideration for PDE. Typical PDE estimation results are presented for the IEEE 34 test node feeder distribution system allocated with EVGIs.more » « less
-
In this paper, we provide a time-series distribution test system. This test system is a fully observable distribution grid in Midwest U.S. with smart meters (SM) installed at all end users. Our goal is to share a real U.S. distribution grid model without modification. This grid model is comprehensive and representative since it consists of both overhead lines and underground cables, and it has standard distribution grid components such as capacitor banks, line switches, substation transformers with load tap changer and secondary distribution transformers. An important uniqueness of this grid model is it has one-year smart meter measurements at all nodes, thus bridging the gap between existing test feeders and quasi-static time-series based distribution system analysis.more » « less
An official website of the United States government

