skip to main content

Title: Design and simulation platform for evaluation of grid distribution system and transactive energy
With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2].  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 6th Annual Symposium on Hot Topics in the Science of Security
Page Range / eLocation ID:
1 to 2
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments. 
    more » « less
  2. The NIST Transactive Energy (TE) Modeling and Simulation Challenge for the Smart Grid (Challenge) spanned from 2015 to 2018. The TE Challenge was initiated to identify simulation tools and expertise that might be developed or combined in co-simulation platforms to enable the evaluation of transactive energy approaches. Phase I of the Challenge spanned 2015 to 2016, with team efforts that improved understanding of TE concepts, identified relevant simulation tools and co-simulation platforms, and inspired the development of a TE co-simulation abstract component model that paved the way for Phase II. The Phase II effort spanned Spring 2017 through Spring 2018, where the teams collaboratively developed a specific TE problem scenario, a common grid topology, and common reporting metrics to enable direct comparison of results from simulation of each team's TE approach for the defined scenario.This report presents an overview of the TE Challenge, the TE abstract component model, and the common scenario.It also compiles the individual Challenge participants' research reports from Phase II. The common scenario involves a weather event impacting a distribution grid with very high penetration of photovoltaics, leading to voltage regulation challenges that are to be mitigated by TE methods. Four teams worked with this common scenario and different TE models to incentivize distributed resource response to voltage deviations, performing these simulations on different simulation platforms. A fifth team focused on a co-simulation platform that can be used for online TE simulations with existing co-simulation components. The TE Challenge Phase II has advanced co-simulation modeling tools and platforms for TE system performance analysis, developed a referenceable TE scenario that can support ongoing comparative simulations, and demonstrated various TE approaches for managing voltage on a distribution grid with high penetration of photovoltaics. 
    more » « less
  3. Today‚Äôs smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks. 
    more » « less
  4. Our simulation-based experiments are aimed to demonstrate a use case on the feasibility of fulfillment of global energy demand by primarily relying on solar energy through the integration of a longitudinally-distributed grid. These experiments demonstrate the availability of simulation technologies, good approximation models of grid components, and data for simulation. We also experimented with integrating different tools to create realistic simulations as we are currently developing a detailed tool- chain for experimentation. These experiments consist of a network of model houses at different locations in the world, each producing and consuming only solar energy. The model includes houses, various appliances, appliance usage schedules, regional weather information, floor area, HVAC systems, population, number of houses in the region, and other parameters to imitate a real-world scenario. Data gathered from the power system simulation is used to develop optimization models to find the optimal solar panel area required at the different locations to satisfy energy demands in different scenarios. 
    more » « less
  5. The declining cost and rising penetration of solar energy is poised to fundamentally impact grid operations, as utilities must continuously offset, potentially rapid and increasingly large, power fluctuations from highly distributed and "uncontrollable" solar sites to maintain the instantaneous balance between electricity's supply and demand. Prior work proposes to address the problem by designing various policies that actively control solar power to optimize grid operations. However, these policies implicitly assume the presence of "smart" solar modules capable of regulating solar output based on various algorithms. Unfortunately, implementing such algorithms is currently not possible, as smart inverters embed only a small number of operating modes and are not programmable. To address the problem, this paper presents the design and implementation of a software-defined solar module, called Helios. Helios exposes a high-level programmatic interface to a DC-DC power optimizer, which enables software to remotely control a solar module's power output in real time between zero and its current maximum, as dictated by the Sun's position and weather. Unlike current smart inverters, Helios focuses on enabling direct programmatic control of real solar power capable of implementing a wide range of control policies, rather than a few highly-specific operating modes. We evaluate Helios' performance, including its latency, energy usage, and flexibility. For the latter, we implement and evaluate a wide range of solar control algorithms both in the lab, using a solar emulator and programmable load, and outdoors. 
    more » « less