skip to main content


Title: Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.

 
more » « less
Award ID(s):
1660611
NSF-PAR ID:
10079579
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
48
ISSN:
0027-8424
Page Range / eLocation ID:
p. 12124-12129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isostructural Cr and Fe nanoporous MIL-101, synthesized without mineralizing agents, are investigated for styrene oxidation utilizing aqueous hydrogen peroxide to yield valuable oxygenates for chemical synthesis applications. Styrene conversion rates and oxygenate product distributions both depend on metal identity, as MIL-101(Fe) is more reactive for total styrene oxidation and is more pathway selective, preferring aldehyde (benzaldehyde) formation at the α-carbon to the aromatic ring, where MIL-101(Cr) sustains epoxide (styrene oxide) production at the same α-carbon. These pathways often involve hydrogen peroxide derived radical intermediates (O, –HOO˙, –HO − ˙) and metallocycle transition states. We postulate that the higher reactivity of one of these surface intermediates, Fe( iv )O relative to Cr( iv )O, leads to higher styrene oxidation rates for MIL-101(Fe), while higher electrophilicity of Cr( iii )–OOH intermediates translates to the higher styrene oxide selectivity observed for MIL-101(Cr). Secondary styrene oxide and benzaldehyde conversions are observed over both analogs, but the former is more prevalent over MIL-101(Fe) due to higher Lewis/Brønsted acid site density and strength compared to MIL-101(Cr). Recyclability experiments combined with characterization via XRD, SEM/EDXS, and FT-IR and UV-vis spectroscopies show that the nature of MIL-101(Fe) sites does not change significantly with each cycle, whereas MIL-101(Cr) suffers from metal leaching, which impacts styrene conversion rates and product distribution. Both catalysts require active site regeneration, though MIL-101(Fe) sites are more susceptible to reactivation, even under mild conditions. Finally, examination of styrene conversion for three unique synthesized phases of MIL-101(Cr) rationalizes that nodal defects are largely responsible for observed reactivity and selectivity but predispose the framework to metal leaching as a predominant deactivation mechanism. 
    more » « less
  2. null (Ed.)
    The recent research developments on the active sites in Fe-zeolites for redox catalysis are discussed. Building on the characterisation of the α-Fe/α-O active sites in the beta and chabazite zeolites, we demonstrate a bottom-up approach to successfully understand and develop Fe-zeolite catalysts. We use the room temperature benzene to phenol reaction as a relevant example. We then suggest how the spectroscopic identification of other monomeric and dimeric iron sites could be tackled. The challenges in the characterisation of active sites and intermediates in NO X selective catalytic reduction catalysts and further development of catalysts for mild partial methane oxidation are briefly discussed. 
    more » « less
  3. Metal–organic coordination networks at surfaces, formed by on-surface redox assembly, are of interest for designing specific and selective chemical function at surfaces for heterogeneous catalysts and other applications. The chemical reactivity of single-site transition metals in on-surface coordination networks, which is essential to these applications, has not previously been fully characterized. Here, we demonstrate with a surface-supported, single-site V system that not only are these sites active toward dioxygen activation, but the products of that reaction show much higher selectivity than traditional vanadium nanoparticles, leading to only one V-oxo product. We have studied the chemical reactivity of one-dimensional metal–organic vanadium – 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPTZ) chains with O 2 . The electron-rich chains self-assemble through an on-surface redox process on the Au(100) surface and are characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, and density functional theory. Reaction of V-DPTZ chains with O 2 causes an increase in V oxidation state from V II to V IV , resulting in a single strongly bonded (DPTZ 2− )V IV O product and spillover of O to the Au surface. DFT calculations confirm these products and also suggest new candidate intermediate states, providing mechanistic insight into this on-surface reaction. In contrast, the oxidation of ligand-free V is less complete and results in multiple oxygen-bound products. This demonstrates the high chemical selectivity of single-site metal centers in metal–ligand complexes at surfaces compared to metal nanoislands. 
    more » « less
  4. Abstract

    Methane over‐oxidation by copper‐exchanged zeolites prevents realization of high‐yield catalytic conversion. However, there has been little description of the mechanism for methane over‐oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3O3]2+active sites can over‐oxidize methane. However, the role of [Cu3O3]2+sites in methane‐to‐methanol conversion remains under debate. Here, we examine methane over‐oxidation by dicopper [Cu2O]2+and [Cu2O2]2+sites using DFT in zeolite mordenite (MOR). For [Cu2O2]2+, we considered the μ‐(η22) peroxo‐, and bis(μ‐oxo) motifs. These sites were considered in the eight‐membered (8MR) ring of MOR. μ‐(η22) peroxo sites are unstable relative to the bis(μ‐oxo) motif with a small interconversion barrier. Unlike [Cu2O]2+which is active for methane C−H activation, [Cu2O2]2+has a very large methane C−H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over‐oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3group, followed by OH and can proceed near 200 °C. Thus, for [Cu2O]2+and [Cu2O2]2+species, over‐oxidation is an inter‐site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra‐site process for [Cu3O3]2+sites and the role of Brønsted acid sites.

     
    more » « less
  5. Ethylene oxidation by Ag catalysts has been extensively investigated over the past few decades, but many key fundamental issues about this important catalytic system are still unresolved. This overview of the selective oxidation of ethylene to ethylene oxide by Ag catalysts critically examines the experimental and theoretical literature of this complex catalytic system: (i) the surface chemistry of silver catalysts (single crystal, powder/foil, and supported Ag/α-Al2O3), (ii) the role of promoters, (iii) the reaction kinetics, (iv) the reaction mechanism, (v) density functional theory (DFT), and (vi) microkinetic modeling. Only in the past few years have the modern catalysis research tools of in situ/operando spectroscopy and DFT calculations been applied to begin establishing fundamental structure−activity/selectivity relationships. This overview of the ethylene oxidation reaction by Ag catalysts covers what is known and what issues still need to be determined to advance the rational design of this important catalytic system. 
    more » « less