skip to main content


Title: Reaction pathways and deactivation mechanisms of isostructural Cr and Fe MIL-101 during liquid-phase styrene oxidation by hydrogen peroxide
Isostructural Cr and Fe nanoporous MIL-101, synthesized without mineralizing agents, are investigated for styrene oxidation utilizing aqueous hydrogen peroxide to yield valuable oxygenates for chemical synthesis applications. Styrene conversion rates and oxygenate product distributions both depend on metal identity, as MIL-101(Fe) is more reactive for total styrene oxidation and is more pathway selective, preferring aldehyde (benzaldehyde) formation at the α-carbon to the aromatic ring, where MIL-101(Cr) sustains epoxide (styrene oxide) production at the same α-carbon. These pathways often involve hydrogen peroxide derived radical intermediates (O, –HOO˙, –HO − ˙) and metallocycle transition states. We postulate that the higher reactivity of one of these surface intermediates, Fe( iv )O relative to Cr( iv )O, leads to higher styrene oxidation rates for MIL-101(Fe), while higher electrophilicity of Cr( iii )–OOH intermediates translates to the higher styrene oxide selectivity observed for MIL-101(Cr). Secondary styrene oxide and benzaldehyde conversions are observed over both analogs, but the former is more prevalent over MIL-101(Fe) due to higher Lewis/Brønsted acid site density and strength compared to MIL-101(Cr). Recyclability experiments combined with characterization via XRD, SEM/EDXS, and FT-IR and UV-vis spectroscopies show that the nature of MIL-101(Fe) sites does not change significantly with each cycle, whereas MIL-101(Cr) suffers from metal leaching, which impacts styrene conversion rates and product distribution. Both catalysts require active site regeneration, though MIL-101(Fe) sites are more susceptible to reactivation, even under mild conditions. Finally, examination of styrene conversion for three unique synthesized phases of MIL-101(Cr) rationalizes that nodal defects are largely responsible for observed reactivity and selectivity but predispose the framework to metal leaching as a predominant deactivation mechanism.  more » « less
Award ID(s):
2011750
NSF-PAR ID:
10325148
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
11
Issue:
15
ISSN:
2044-4753
Page Range / eLocation ID:
5282 to 5296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Pt through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites. 
    more » « less
  2. Abstract

    Synthesized iron‐terephthalate metal–organic frameworks (MOFs), MIL‐101 and MOF‐235, with contrasting morphologies are examined to elucidate the role of structural arrangement in catalytic aqueous pollutant degradation. MIL‐101 demonstrates a larger pseudo‐first order rate constant than MOF‐235 (3.5 ± 0.2 molFe−1·s−1vs. 0.84 ± 0.07 molFe−1·s−1) toward oxidation of methylene blue (MB) dye with excess hydrogen peroxide at ambient temperature, likely due to intrinsic differences in ligand coordination at their metal nodes. However, despite continued activity upon reuse, both MOFs undergo structural alterations resulting in formation of leached species active for MB degradation that have been obfuscated in previous studies. Detailed stability testing andex situcharacterization of recovered catalyst, examinations that remain underreported in Fe‐MOF studies for pollutant oxidation, indicate that water plays a prominent role in the breakdown of these frameworks. Collectively, this work informs the interpretation and use of common Fe‐MOFs for aqueous applications, relating material changes to observed reaction phenomena.

     
    more » « less
  3. A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.

     
    more » « less
  4. The production of ammonia for agricultural and energy demands has accelerated research for more environmentally-friendly synthesis options, particularly the electrocatalytic reduction of molecular nitrogen (nitrogen reduction reaction, NRR). Catalyst activity for NRR, and selectivity for NRR over the competitive hydrogen evolution reaction (HER), are critical issues for which fundamental knowledge remains scarce. Herein, we present results regarding the NRR activity and selectivity of sputter-deposited titanium nitride and titanium oxynitride films for NRR and HER. Electrochemical, fluorescence and UV absorption measurements show that titanium oxynitride exhibits NRR activity under acidic conditions (pH 1.6, 3.2) but is inactive at pH 7. Ti oxynitride is HER inactive at all these pH values. In contrast, TiN – with no oxygen content upon deposition – is both NRR and HER inactive at all the above pH values. This difference in oxynitride/nitride reactivity is observed despite the fact that both films exhibit very similar surface chemical compositions – predominantly Ti IV oxide – upon exposure to ambient, as determined by ex situ X-ray photoelectron spectroscopy (XPS). XPS, with in situ transfer between electrochemical and UHV environments, however, demonstrates that this Ti IV oxide top layer is unstable under acidic conditions, but stable at pH 7, explaining the inactivity of titanium oxynitride at this pH. The inactivity of TiN at acidic and neutral pH is explained by DFT-based calculations showing that N 2 adsorption at N-ligated Ti centers is energetically significantly less favorable than at O-ligated centers. These calculations also predict that N 2 will not bind to Ti IV centers due to a lack of π-backbonding. Ex situ XPS measurements and electrochemical probe measurements at pH 3.2 demonstrate that Ti oxynitride films undergo gradual dissolution under NRR conditions. The present results demonstrate that the long-term catalyst stability and maintenance of metal cations in intermediate oxidation states for pi-backbonding are critical issues worthy of further examination. 
    more » « less
  5. Manganese (Mn) oxide solids widely exist in nature, serving as both electron donors and acceptors for a variety of redox reactions. Previous studies have highlighted the adsorption of dissolved organic matter (DOM) on Mn oxides, as well as the reduction of Mn oxides by DOM. Here, we show the underappreciated roles of photolytic reactions of DOM in Mn2+(aq) oxidation and its consequential formation of Mn oxide solids. During the photolysis of DOM, reactive intermediates including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) can be generated. Among them, we found that O2•− was responsible for Mn oxidation. In addition, in the presence of bromide ions (Br−), the photolytic reactions between DOM and Br− formed reactive bromide radicals and facilitated the oxidation of Mn2+(aq) to Mn oxide solids. Moreover, the composition of DOM affected its oxidative capability. When DOM contained more aromatic functional groups, we observed more oxidation of Mn2+ to Mn oxides. These new findings advance our knowledge of natural Mn2+ oxidation and Mn(III/IV) oxide formation, as well as the hitherto overlooked oxidative role of DOM in the oxidation of metal ions in surface water under sunlight illumination. 
    more » « less