skip to main content


Title: Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress
Abstract

Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in threePinus radiataclones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction inKroot‐rcaused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease inKplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery ofKroot‐randgs. Our results demonstrated that the reduction inKplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleafas water stress started. We concluded that higherKplant‐lis associated with water stress resistance by sustaining a less negative Ψleafand delaying stomatal closure.

 
more » « less
Award ID(s):
1754893
NSF-PAR ID:
10079887
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant, Cell & Environment
Volume:
42
Issue:
2
ISSN:
0140-7791
Page Range / eLocation ID:
p. 717-729
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Given increasing water deficits across numerous ecosystems world‐wide, it is urgent to understand the sequence of failure of leaf function during dehydration.

    We assessed dehydration‐induced losses of rehydration capacity and maximum quantum yield of the photosystemII(Fv/Fm) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductancegs, and hydraulic conductanceKleaf, including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψleafthresholds of functional impairment.

    On average, losses of leaf rehydration capacity occurred at dehydration beyond 50% declines ofgs,Kleafand turgor loss point. Losses ofFv/Fmoccurred after much stronger dehydration and were not recovered with leaf rehydration. Across species, tissue dehydration thresholds were intercorrelated, suggesting trait co‐selection. Thresholds for each type of functional decline were much less variable across species in terms of relative water content than Ψleaf.

    The stomatal and leaf hydraulic systems show early functional declines before cell integrity is lost. Substantial damage to the photochemical apparatus occurs at extreme dehydration, after complete stomatal closure, and seems to be irreversible.

     
    more » « less
  2. Abstract

    Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS), leaf water potential (ΨL), and stomatal conductance (gs), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨLandgsacross biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL) on the apparent sensitivities of ΨLandgsto drought. After validating the model with tree‐ and ecosystem‐scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity ofgsto declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨLandgsentirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.

     
    more » « less
  3. Abstract

    The ability to transport water through tall stems hydraulically limits stomatal conductance (gs), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height‐related decrease ings, regardless of path length. We hypothesized that kudzu (Pueraria lobata) prevents strong declines ingswith height through appreciable structural and hydraulic compensative alterations. We observed only a 12% decline in maximumgsalong 15‐m‐long stems and were able to model this empirical trend. Increasing resistance with transport distance was not compensated by increasing sapwood‐to‐leaf‐area ratio. Compensating for increasing leaf area by adjusting the driving force would require water potential reaching −1.9 MPa, far below the wilting point (−1.2 MPa). The negative effect of stem length was compensated for by decreasing petiole hydraulic resistance and by increasing stem sapwood area and water storage, with capacitive discharge representing 8–12% of the water flux. In addition, large lateral (petiole, leaves) relative to axial hydraulic resistance helped improve water flow distribution to top leaves. These results indicate thatgsof distal leaves can be similar to that of basal leaves, provided that resistance is highest in petioles, and sufficient amounts of water storage can be used to subsidize the transpiration stream.

     
    more » « less
  4. Abstract

    Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions ofHelianthus annuusdiffered in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study,H. annuusaccessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well‐watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivatedH. annuusaccessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmaxwas the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. OurH. annuusresults support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivatedH. annuusremains elusive.

     
    more » « less
  5. Abstract

    In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C‐gain while minimizing transpirational water‐loss. This trade‐off between C‐gain and water‐loss can in part be achieved through the coordination of leaf‐level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C‐gain and transpirational water‐loss, we grew, under common growth conditions, 18 C4grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf‐level structural and anatomical traits associated with mesophyll conductance (gm) and leaf hydraulic conductance (Kleaf). The C4grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes) and adaxial stomatal density (SDada) which supported greater gm. These grasses also showed greater leaf thickness and vein‐to‐epidermis distance, which may lead to lower Kleaf. Additionally, grasses with greater gmand lower Kleafalso showed greater photosynthetic rates (Anet) and leaf‐level water‐use efficiency (WUE). In summary, we identify a suite of leaf‐level traits that appear important for adaptation of C4grasses to habitats with low MAP and may be useful to identify C4species showing greater Anetand WUE in drier conditions.

     
    more » « less