Two genera of the Rhodymeniales, Halopeltis and Leptofauchea, are here reported for the first time from the Hawaiian Islands and represent the deepest records for both genera. Molecular phylogenetic analyses of cytochrome oxidase subunit I (COI), rbcL, and large subunit ribosomal DNA (LSU) sequences for Hawaiian specimens of Leptofauchea revealed one well-supported clade of Hawaiian specimens and three additional lineages. One of these clades is described here as Leptofauchea huawelau sp. nov., and is thus far known only from mesophotic depths at Penguin Bank in the Main Hawaiian Islands. L. huawelau sp. nov. is up to 21 cm, and is the largest known species. An additional lineage identified in the LSU and rbcL analyses corresponds to the recently described L. lucida from Western Australia, and is a new record for Hawai‘i. Hawaiian Halopeltis formed a well-supported clade along with H. adnata from Korea, the recently described H. tanakae from mesophotic depths in Japan, and H. willisii from North Carolina, and is here described as Halopeltis nuahilihilia sp. nov. H. nuahilihilia sp. nov. has a distinctive morphology of narrow vegetative axes that harbor constrictions along their length. The current distribution of H. nuahilihilia includes mesophotic depths around W. Maui, W. Moloka‘i, and the island of Hawai‘i in the Main Hawaiian Islands. Few reproductive characters were observed because of the small number of specimens available; however, both species are distinct based on phylogeny and morphology. These descriptions further emphasize the Hawaiian mesophotic zone as a location harboring many undescribed species of marine macroalgae.
more »
« less
Characterization of Elastic Modulus Across the (Al 1–x Sc x )N System Using DFT and Substrate-Effect-Corrected Nanoindentation
- Award ID(s):
- 1534503
- PAR ID:
- 10080202
- Publisher / Repository:
- Institute of Electrical and Electronics Engineers
- Date Published:
- Journal Name:
- IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
- Volume:
- 65
- Issue:
- 11
- ISSN:
- 0885-3010
- Page Range / eLocation ID:
- p. 2167-2175
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multifunctional materials that are capable of facilitating multiple electrocatalytic processes are highly desirable. This work reports the observation of bifunctional electrocatalytic properties for water‐splitting in layered oxides, featuring 2‐dimensional layers of octahedrally coordinated transition metals separated by alkaline‐earth or rare‐earth metals. Remarkably, these materials are able to catalyze both half‐reactions of water‐splitting,i. e., oxygen‐evolution reaction (OER) and hydrogen‐evolution reaction (HER). Electrical charge‐transport studies of SrLaFe1‐xCoxO4‐δin a wide range of temperatures, 25 to 800 °C, indicate semiconducting behavior for all three compounds, where there is a systematic increase in electrical conductivity as a function of temperature. The end member of the series, SrLaCoO4‐δ, exhibits the highest electrical charge transport and best electrocatalytic activity toward both OER and HER. This catalyst also features the highest degree of polyhedral distortion as well as the presence of oxygen‐vacancies. In addition, the transition metals in this material have a favorable electronic configuration for enhanced electrocatalytic activity.more » « less
An official website of the United States government
