skip to main content


Search for: All records

Award ID contains: 1534503

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many of the studies on the entropy‐stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O have been heavily application‐based. Previous works have studied effects of cation stoichiometry on the entropy‐driven reaction to form a single phase, but a fundamental exploration of the effects of anion stoichiometry and/or redox chemistry on electrical properties is lacking. Using near‐edge X‐ray absorption fine structure (NEXAFS) and electrical measurements, we show that oxidizing thin film samples of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O affects primarily the valence of Co, leaving the other cations in this high‐entropy system unchanged. This oxidation increases electrical conduction in these thin films, which occurs via small polaron hopping mediated by the Co valence shift from 2+ to a mixed 2+/3+ state. In parallel, we show that bulk samples sintered in an oxygen‐rich atmosphere have a lower activation energy for electrical conduction than those equilibrated in a nitrogen (reducing) atmosphere. Combining feasible defect compensation scenarios with electrical impedance measurements and NEXAFS data, we propose a self‐consistent interpretation of Co redox‐mediated small polaron conduction as the dominant method of charge transfer in this system.

     
    more » « less
  2. Abstract

    Ternary metal‐oxide material systems commonly crystallize in the perovskite crystal structure, which is utilized in numerous electronic applications. In contrast to oxides, there are no known nitride perovskites, likely due to the competition with oxidation, which makes the formation of pure nitride materials difficult and synthesis of oxynitride materials more common. While deposition of oxynitride perovskite thin films is important for many electronic applications, it is difficult to control oxygen and nitrogen stoichiometry. Lanthanum tungsten oxynitride (LaWN3−δOδ) thin films with varying La:W ratio are synthesized by combinatorial sputtering and characterized for their chemical composition, crystal structure, and microstructure. A three‐step synthesis method, which involves co‐sputtering, capping layer deposition, and rapid thermal annealing, is established for producing crystalline thin films while minimizing the oxygen content. Elemental depth profiling results show that the cation‐stoichiometric films contain approximately one oxygen for every five nitrogen (δ = 0.5). Synchrotron‐based diffraction indicates a tetragonal perovskite crystal structure. These results are discussed in terms of the perovskite tolerance factors, octahedral tilting, and bond valence. Overall, this synthesis and characterization is expected to pave the way toward future thin film property measurements of lanthanum tungsten oxynitrides and eventual synthesis of oxygen‐free nitride perovskites.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)