Abstract We present individual star formation histories (SFHs) of ∼3000 massive galaxies (log(M*/M⊙) > 10.5) from the Large Early Galaxy Astrophysics Census spectroscopic survey at a lookback time of ∼7 billion yr and quantify the population trends leveraging 20 hr deep-integrated spectra of these ∼1800 star-forming and ∼1200 quiescent galaxies at 0.6 <z< 1.0. Essentially all galaxies at this epoch contain stars of age <3 Gyr, in contrast with older massive galaxies today, facilitating better recovery of previous generations of star formation at cosmic noon and earlier. We conduct spectrophotometric analysis using parametric and nonparametric Bayesian stellar population synthesis modeling tools—BagpipesandProspector—to constrain the median SFHs of this mass complete sample and characterize population trends. A consistent picture arises for the late-time stellar mass growth when quantified ast50andt90, corresponding to the age of the Universe when galaxies formed 50% and 90% of their total stellar mass, although the two methods disagree at the earliest formation times (e.g.,t10). Our results reveal trends in both stellar mass and stellar velocity dispersion as in the local Universe—low-mass galaxies with shallower potential wells grow their stellar masses later in cosmic history compared to high-mass galaxies. Unlike local quiescent galaxies, the median duration of late-time star formation (τSF,late=t90–t50) does not consistently depend on the stellar mass. This census sets a benchmark for future deep spectrophotometric studies of the more distant Universe.
more »
« less
A gamma-ray determination of the Universe’s star formation history
The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshiftz~ 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies atz~ 6.
more »
« less
- Award ID(s):
- 1715256
- PAR ID:
- 10080535
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 362
- Issue:
- 6418
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1031-1034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with and mag, which are consistent with results based onz∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies atz∼ 4. This study observationally confirms expectations that atz∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshiftz∼ 5 occurring in galaxies fainter than our detection limit ofM1600Å≈ −18.3 mag.more » « less
-
Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M⊙<Mstar< 1010M⊙out to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M⊙,M200< 3 × 1011M⊙. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2.more » « less
-
ABSTRACT The formation of the first stars marks a watershed moment in the history of our Universe. As the first luminous structures, these stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct an analytic model to self-consistently trace the formation of Pop III stars inside minihaloes in the presence of the fluctuating ultraviolet background, relic dark matter (DM)-baryon relative velocities from the early universe, and an X-ray background, which largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star formation inside these haloes. Using our new prescription for the criteria allowing Pop III star formation, we follow a population of DM haloes from z = 50 through z = 6 and examine the global star formation history, finding that each process defines its own key epoch: (i) the stream velocity dominates at the highest redshifts (z ≳ 30), (ii) the UV background sets the tone at intermediate times (30 ≳ z ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (z ≲ 15). In all of our models, Pop III stars continue to form down to z ∼ 7–10, when their supernovae will be potentially observable with forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin–flip signal of atomic hydrogen.more » « less
-
Probing bursty star formation by cross-correlating extragalactic background light and galaxy surveysABSTRACT Understanding the star formation rate (SFR) variability and how it depends on physical properties of galaxies is important for developing and testing the theory of galaxy formation. We investigate how statistical measurements of the extragalactic background light (EBL) can shed light on this topic and complement traditional methods based on observations of individual galaxies. Using semi-empirical models of galaxy evolution and SFR indicators sensitive to different star formation time-scales (e.g. H α and ultraviolet continuum luminosities), we show that the SFR variability, quantified by the joint probability distribution of the SFR indicators (i.e. the bivariate conditional luminosity function), can be characterized as a function of galaxy mass and redshift through the cross-correlation between deep, near-infrared maps of the EBL and galaxy distributions. As an example, we consider combining upcoming SPHEREx maps of the EBL with galaxy samples from Rubin Observatory Legacy Survey of Space and Time. We demonstrate that their cross-correlation over a sky fraction of fsky ∼ 0.5 can constrain the joint SFR indicator distribution at high significance up to z ∼ 2.5 for mass-complete samples of galaxies down to $$M_{*}\sim 10^9\, {\rm M}_{\odot }$$. These constraints not only allow models of different SFR variability to be distinguished, but also provide unique opportunities to investigate physical mechanisms that require large number statistics such as environmental effects. The cross-correlations investigated illustrate the power of combining cosmological surveys to extract information inaccessible from each data set alone, while the large galaxy populations probed capture ensemble-averaged properties beyond the reach of targeted observations towards individual galaxies.more » « less
An official website of the United States government
