skip to main content

Title: Probing bursty star formation by cross-correlating extragalactic background light and galaxy surveys

Understanding the star formation rate (SFR) variability and how it depends on physical properties of galaxies is important for developing and testing the theory of galaxy formation. We investigate how statistical measurements of the extragalactic background light (EBL) can shed light on this topic and complement traditional methods based on observations of individual galaxies. Using semi-empirical models of galaxy evolution and SFR indicators sensitive to different star formation time-scales (e.g. H α and ultraviolet continuum luminosities), we show that the SFR variability, quantified by the joint probability distribution of the SFR indicators (i.e. the bivariate conditional luminosity function), can be characterized as a function of galaxy mass and redshift through the cross-correlation between deep, near-infrared maps of the EBL and galaxy distributions. As an example, we consider combining upcoming SPHEREx maps of the EBL with galaxy samples from Rubin Observatory Legacy Survey of Space and Time. We demonstrate that their cross-correlation over a sky fraction of fsky ∼ 0.5 can constrain the joint SFR indicator distribution at high significance up to z ∼ 2.5 for mass-complete samples of galaxies down to $M_{*}\sim 10^9\, {\rm M}_{\odot }$. These constraints not only allow models of different SFR variability to be distinguished, but also provide unique opportunities to investigate physical mechanisms that require large number statistics such as environmental effects. The cross-correlations investigated illustrate the power of combining cosmological surveys to extract information inaccessible from each data set alone, while the large galaxy populations probed capture ensemble-averaged properties beyond the reach of targeted observations towards individual galaxies.

more » « less
Award ID(s):
2307327 1652522 2108230
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 2395-2406
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    The cosmic infrared background (CIB) traces the emission of star-forming galaxies throughout all cosmic epochs. Breaking down the contribution from galaxies at different redshifts to the observed CIB maps would allow us to probe the history of star formation. In this paper, we cross-correlate maps of the CIB with galaxy samples covering the range z ≲ 2 to measure the bias-weighted star-formation rate (SFR) density 〈bρSFR〉 as a function of time in a model independent way. This quantity is complementary to direct measurements of the SFR density ρSFR, giving a higher weight to more massive haloes, and thus provides additional information to constrain the physical properties of star formation. Using cross-correlations of the CIB with galaxies from the DESI Legacy Survey and the extended Baryon Oscillation Spectroscopic Survey, we obtain high signal-to-noise ratio measurements of 〈bρSFR〉, which we then use to place constraints on halo-based models of the star-formation history. We fit halo-based SFR models to our data and compare the recovered ρSFR with direct measurements of this quantity. We find a qualitatively good agreement between both independent data sets, although the details depend on the specific halo model assumed. This constitutes a useful robustness test for the physical interpretation of the CIB, and reinforces the role of CIB maps as valuable astrophysical probes of the large-scale structure. We report our measurements of 〈bρSFR〉 as well as a thorough account of their statistical uncertainties, which can be used to constrain star-formation models in combination with other data.

    more » « less

    We present an improved study of the relation between supermassive black hole growth and their host galaxy properties in the local Universe (z < 0.33). To this end, we build an extensive sample combining spectroscopic measurements of star formation rate (SFR) and stellar mass from Sloan Digital Sky Survey, with specific Black Hole accretion rate (sBHAR, $\lambda _{\mathrm{sBHAR}} \propto L_{\rm X}/\mathcal {M}_{\ast }$) derived from the XMM–Newton Serendipitous Source Catalogue (3XMM–DR8) and the Chandra Source Catalogue (CSC2.0). We find that the sBHAR probability distribution for both star-forming and quiescent galaxies has a power-law shape peaking at log λsBHAR ∼ −3.5 and declining towards lower sBHAR in all stellar mass ranges. This finding confirms the decrease of active galactic nucleus (AGN) activity in the local Universe compared to higher redshifts. We observe a significant correlation between $\log \, \lambda _{\rm sBHAR}$ and $\log \, {\rm SFR}$ in almost all stellar mass ranges, but the relation is shallower compared to higher redshifts, indicating a reduced availability of accreting material in the local Universe. At the same time, the BHAR-to-SFR ratio for star-forming galaxies strongly correlates with stellar mass, supporting the scenario where both AGN activity and stellar formation primarily depend on the stellar mass via fuelling by a common gas reservoir. Conversely, this ratio remains constant for quiescent galaxies, possibly indicating the existence of the different physical mechanisms responsible for AGN fuelling or different accretion mode in quiescent galaxies.

    more » « less
  3. Abstract

    We present the Texas Euclid Survey for Lyα(TESLA), a spectroscopic survey in the 10 deg2of the Euclid North Ecliptic Pole (NEP) field. Using TESLA, we study how the physical properties of Lyαemitters (LAEs) correlate with Lyαemission to understand the escape of Lyαemission from galaxies at redshifts of 2–3.5. We present an analysis of 43 LAEs performed in the NEP field using early data from the TESLA survey. We use Subaru Hyper Suprime-Cam imaging in thegrizybands, Spitzer/IRAC channels 1 and 2 from the Hawaii 20 deg2(H20) survey, and spectra acquired by the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) on the Hobby–Eberly Telescope. We perform spectral energy distribution (SED) fitting to compute the galaxy properties of 43 LAEs, and study correlations between stellar mass, star formation rate (SFR), and dust to the Lyαrest-frame equivalent width (WLyα). We uncover marginal (1σsignificance) correlations between stellar mass andWLyα, and SFR andWLyα, with a Spearman correlation coefficient of −0.34.14+.17and −0.37.14+.16, respectively. We show that theWLyαdistribution of the 43 LAEs is consistent with being drawn from an exponential distribution with an e-folding scale ofW0= 150 Å. Once complete the TESLA survey will enable the study of ≳50,000 LAEs to explore more correlations between galaxy properties andWLyα. The large sample size will allow the construction of a predictive model forWLyαas a function of SED-derived galaxy properties, which could be used to improve Lyα-based constraints on reionization.

    more » « less
  4. ABSTRACT Matching the number counts of high-z submillimetre-selected galaxies (SMGs) has been a long-standing problem for galaxy formation models. In this paper, we use 3D dust radiative transfer to model the submm emission from galaxies in the simba cosmological hydrodynamic simulations, and compare predictions to the latest single-dish observational constraints on the abundance of 850 μm-selected sources. We find good agreement with the shape of the integrated 850 μm luminosity function, and the normalization is within 0.25 dex at >3 mJy, unprecedented for a fully cosmological hydrodynamic simulation, along with good agreement in the redshift distribution of bright SMGs. The agreement is driven primarily by simba’s good match to infrared measures of the star formation rate (SFR) function between z = 2 and 4 at high SFRs. Also important is the self-consistent on-the-fly dust model in simba, which predicts, on average, higher dust masses (by up to a factor of 2.5) compared to using a fixed dust-to-metals ratio of 0.3. We construct a light-cone to investigate the effect of far-field blending, and find that 52 per cent of sources are blends of multiple components, which makes a small contribution to the normalization of the bright end of the number counts. We provide new fits to the 850 μm luminosity as a function of SFR and dust mass. Our results demonstrate that solutions to the discrepancy between submm counts in simulations and observations, such as a top-heavy initial mass function, are unnecessary, and that submillimetre-bright phases are a natural consequence of massive galaxy evolution. 
    more » « less

    We investigate the origin of rare star formation in an otherwise red-and-dead population of S0 galaxies, using spatially resolved spectroscopy. Our sample consists of 120 low redshift (z < 0.1) star-forming S0 (SF-S0) galaxies from the SDSS-IV MaNGA DR15. We have selected this sample after a visual inspection of deep images from the DESI Legacy Imaging Surveys DR9 and the Subaru/HSC-SSP survey PDR3 to remove contamination from spiral galaxies. We also construct two control samples of star-forming spirals (SF-Sps) and quenched S0s (Q-S0s) to explore their evolutionary link with the star-forming S0s. To study star formation at resolved scales, we use dust-corrected H α luminosity and stellar density (Σ⋆) maps to construct radial profiles of star formation rate (SFR) surface density (ΣSFR) and specific SFR (sSFR). Examining these radial profiles, we find that star formation in SF-S0s is centrally dominated as opposed to disc-dominated star formation in spirals. We also compared various global (size–mass relation, bulge-to-total luminosity ratio) and local (central stellar velocity dispersion) properties of SF-S0s to those of the control sample galaxies. We find that SF-S0s are structurally similar to the quenched S0s and are different from star-forming spirals. We infer that SF-S0s are unlikely to be fading spirals. Inspecting stellar and gas velocity maps, we find that more than $50{{\ \rm per\ cent}}$ of the SF-S0 sample shows signs of recent galaxy interactions such as kinematic misalignment, counter-rotation, and unsettled kinematics. Based on these results, we conclude that in our sample of SF-S0s, star formation has been rejuvenated, with minor mergers likely to be a major driver.

    more » « less