skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tyche: A Risk-Based Permission Model for Smart Homes
Emerging smart home platforms, which interface with a variety of physical devices and support third-party application development, currently use permission models inspired by smartphone operating systems—the permission to access operations are separated by the device which performs them instead of their functionality. Unfortunately, this leads to two issues: (1) apps that do not require access to all of the granted device operations have overprivileged access to them, (2) apps might pose a higher risk to users than needed because physical device operations are fundamentally risk-asymmetric — “door.unlock” provides access to burglars, and “door.lock” can potentially lead to getting locked out. Overprivileged apps with access to mixed-risk operations only increase the potential for damage. We present Tyche, a secure development methodology that leverages the risk-asymmetry in physical device operations to limit the risk that apps pose to smart home users, without increasing the user’s decision overhead. Tyche introduces the notion of risk-based permissions for IoT systems. When using risk-based permissions, device operations are grouped into units of similar risk, and users grant apps access to devices at that risk-based granularity. Starting from a set of permissions derived from the popular Samsung SmartThings platform, we conduct a user study involving domain-experts and Mechanical Turk users to compute a relative ranking of risks associated with device operations. We find that user assessment of risk closely matches that of domain experts. Using this insight, we define risk-based groupings of device operations, and apply it to existing SmartThings apps. We show that existing apps can reduce access to high-risk operations by 60% while remaining operable.  more » « less
Award ID(s):
1646392 1740897
PAR ID:
10080649
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE Cybersecurity Development (SecDev)
Page Range / eLocation ID:
29 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart home IoT devices are becoming increasingly popular. Modern programmable smart home hubs such as SmartThings enable homeowners to manage devices in sophisticated ways to save energy, improve security, and provide conveniences. Unfortunately, many smart home systems contain vulnerabilities, potentially impacting home security and privacy. This paper presents Vigilia, a system that shrinks the attack surface of smart home IoT systems by restricting the network access of devices. As existing smart home systems are closed, we have created an open implementation of a similar programming and configuration model in Vigilia and extended the execution environment to maximally restrict communications by instantiating device-based network permissions. We have implemented and compared Vigilia with forefront IoT-defense systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible overhead. 
    more » « less
  2. With the increasing adoption of smart home devices, users rely on device automation to control their homes. This automation commonly comes in the form of smart home routines, an abstraction available via major vendors. Yet, questions remain about how a system should best handle conflicts in which different routines access the same devices simultaneously. In particular---among the myriad ways a smart home system could handle conflicts, which of them are currently utilized by existing systems, and which ones result in the highest user satisfaction? We investigate the first question via a survey of existing literature and find a set of conditions, modifications, and system strategies related to handling conflicts. We answer the second question via a scenario-based Mechanical-Turk survey of users interested in owning smart home devices and current smart home device owners (N=197). We find that: (i) there is no context-agnostic strategy that always results in high user satisfaction, and (ii) users' personal values frequently form the basis for shaping their expectations of how routines should execute. 
    more » « less
  3. In the smart home landscape, there is an increasing trend of homeowners sharing device access outside their homes. This practice presents unique challenges in terms of security and privacy. In this study, we evaluated the co-management features in smart home management systems to investigate 1) how homeowners establish and authenticate shared users’ access, 2) the access control mechanisms, and 3) the management, monitoring, and revocation of access for shared devices. We conducted a systematic feature analysis of 11 Android and iOS mobile applications (“apps”) and 2 open-source platforms designed for smart home management. Our study revealed that most smart home systems adopt a centralized control model which necessitates shared users to utilize the primary app for device access, while providing diverse sharing mechanisms, such as email or phone invitations and unique codes, each presenting distinct security and privacy advantages. Moreover, we discovered a variety of access control options, ranging from full access to granular access control such as time-based restrictions which, while enhancing security and convenience, necessitate careful management to avoid user confusion. Additionally, our findings highlighted the prevalence of comprehensive methods for monitoring shared users’ access, with most systems providing detailed logs for added transparency and security, although there are some restrictions to safeguard homeowner privacy. Based on our findings, we recommend enhanced access control features to improve user experience in shared settings. 
    more » « less
  4. Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy. In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus. Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work. 
    more » « less
  5. We conducted a user study with 380 Android users, profiling them according to two key privacy behaviors: the number of apps installed, and the Dangerous permissions granted to those apps. We identified four unique privacy profiles: 1) Privacy Balancers (49.74% of participants), 2) Permission Limiters (28.68%), 3) App Limiters (14.74%), and 4) the Privacy Unconcerned (6.84%). App and Permission Limiters were significantly more concerned about perceived surveillance than Privacy Balancers and the Privacy Unconcerned. App Limiters had the lowest number of apps installed on their devices with the lowest intention of using apps and sharing information with them, compared to Permission Limiters who had the highest number of apps installed and reported higher intention to share information with apps. The four profiles reflect the differing privacy management strategies, perceptions, and intentions of Android users that go beyond the binary decision to share or withhold information via mobile apps. 
    more » « less