Abstract Resazurin (Raz) is a phenoxazine dye that can be reduced irreversibly to the daughter compound resorufin (Rru) by aerobic respiration. Previous hydrologic studies using the Raz‐Rru reactive tracer system to quantify water‐sediment interactions and metabolic activity have reported that dilution‐corrected masses of Raz and Rru recovered are smaller than the mass of Raz injected. This lack of mass balance closure has been reported as a nonideality of this tracer system and, to date, it is still unclear what drives incomplete recovery. We used controlled laboratory experiments varying the initial concentrations of Raz, the duration of the experiments, and the type of microbial communities present to quantify mass balances of Raz and Rru under conditions that removed other suspected causes of incomplete recovery in field experiments, i.e., sorption to sediments and photodecay. We used the summation of Raz and Rru concentrations over time to assess mass recovery and variability and found mass recoveries in the range of 85.6–110.4%, with a maximum standard deviation of 7.5%. In three of the four experiments, no strong temporal trend in mass recovery is present. In an experiment withBacillus subtilisbacteria, lower recovery and evidence of a temporal trend in recovery only occurred after 13 hr past the complete transformation of Raz (i.e., beyond the duration of most field experiments). These results suggest that the lack of mass recovery in field studies is likely associated with physical or chemical mechanisms rather than biological interactions with the Raz‐Rru tracer system.
more »
« less
Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments
Abstract. Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz and Rru transport, sorption, and transformation, consisting of 4 column and 72 batch tests using 2 sediments with different physicochemical properties under neutral (pH = 7) and alkaline (pH = 9) conditions. The study aimed at identifying the key processes of reactive transport of Raz and Rru in streambed sediments and the experimental setup best suited for their determination. Data from column experiments were simulated by a travel-time-based model accounting for physical transport, equilibrium and kinetic sorption, and three first-order reactions. We derived the travel-time distributions directly from the breakthrough curve (BTC) of the conservative tracer, fluorescein, rather than from fitting an advective-dispersive transport model, and inferred from those distributions the transfer functions of Raz and Rru, which provided conclusive approximations of the measured BTCs. The most likely reactive transport parameters and their uncertainty were determined by a Markov chain–Monte Carlo approach. Sorption isotherms of both compounds were obtained from batch experiments. We found that kinetic sorption dominates sorption of both Raz and Rru, with characteristic timescales of sorption in the order of 12 to 298 min. Linear sorption models for both Raz and Rru appeared adequate for concentrations that are typically applied in field tracer tests. The proposed two-site sorption model helps to interpret transient tracer tests using the Raz–Rru system.
more »
« less
- Award ID(s):
- 1301346
- PAR ID:
- 10081632
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 18
- Issue:
- 8
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 3151 to 3163
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the fate and transport of per- and polyfluoroalkyl substances (PFAS) at contaminated sites is crucial for effective remedial and regulatory decision-making. This interdisciplinary study offers a novel approach for estimating and mapping PFAS sorption properties and their impact on PFAS fate and transport. By integrating electromagnetic induction (EMI) surveys, physical and chemical sediment characterization, mineralogical characterization, and batch sorption experiments of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), we develop a comprehensive mapping of sorption dynamics. Sediments collected from a compound bar deposit were analyzed to establish correlations between EMI signal, sediment characteristics, and PFOA and PFOS sorption distribution coefficients (Kd). Sorption behavior and EMI response of these compounds were consistent with the sediments’ physical and chemical properties where Kd and electrical conductivity was higher with finer grain size, higher organic matter content, and higher aluminum and iron contents. The study demonstrates that EMI effectively maps PFAS sorption properties spatially, providing crucial insights into the sedimentological controls that govern both EMI responses and PFAS sorption. Correlation analysis yielded Pearson correlation values of 0.71 for EMI-PFOA Kd and 0.56 for EMI-PFOS Kd, underscoring the potential of EMI in predicting the spatial distribution of PFAS sorption in complex sedimentary environments. While these Pearson correlation values indicate moderate to strong correlations, their significance is amplified by the cost-effectiveness and extensive aerial coverage of EMI, the sparsity of sediment samples typically collected for batch sorption, and their spatial distribution. These results highlight the potential of EMI to identify sorption hotspots, thereby guiding targeted remediation efforts and enhancing site management strategies, ultimately reducing both costs and environmental impacts.more » « less
-
The benthic biolayer is a shallow zone of reactive streambed sediments, widely believed to contribute disproportionately to whole‐stream reactions such as aerobic respiration and contaminant transformation. Quantifying the relative contribution of the biolayer to whole‐stream reactions remains challenging because it requires that hyporheic zone solute transport and reaction heterogeneity are explicitly captured within a single modeling framework. Here, we use field experiments and modeling to quantify the biolayer's aerobic reactivity relative to other stream compartments. We co‐injected and monitored several fluorescent tracers, including the reactive tracer resazurin, into a controlled experimental stream. We characterized reactive transport in the water column and at multiple depths in the hyporheic zone by fitting all data to a new mobile‐immobile model, using resazurin‐to‐resorufin conversion as an indicator of aerobic bioreactivity. Results show that the biolayer converted 8 times more resazurin to resorufin than all other stream compartments, and 80% of this conversion occurred within 2 reach advection times. This hotspot and hot moment behavior is attributed to the biolayer's ability to rapidly acquire, transiently retain, and rapidly degrade stream‐borne solutes. The model analysis shows that the majority of raz‐to‐rru conversion occurs in the biolayer across streams with a wide range of biolayer structural properties, including streams with a biolayer that is less reactive than deeper regions of the hyporheic zone. Together, our results show that the biolayer is a common feature of streams and rivers that should be considered in network‐scale models of aerobic reactivity.more » « less
-
Yamashita, Y.; Kano, M. (Ed.)Patterned charged membranes with engendered useful characteristics can offer selective transport of electrolytes. Chemical patterning across the membrane surface via a physical inkjet deposition process requires precise control of the reactive-ink formulation, which enables the introduction of charged functionality to the membrane. This study develops a new dynamic mathematical model for the primary step of the batch reactive-ink formulation considering an ink mixture of copper sulphate and ascorbic acid. Nonlinear least squares parameter estimation is performed to infer three kinetic model parameters by analysing data from nine dynamic experiments simultaneously. Global sensitivity and Fisher information matrix (FIM) analyses reveal only one kinetic parameter is identifiable from time-series pH measurements. The fitted model can capture the overall nonlinear dynamics of the batch reaction and works best for initial Cu2 + concentrations between 30 and 50 mM. Time-series Cu2 + or Cu+ concentration measurements are recommended in future experiments to elucidate the kinetics of reactive-ink formulation.more » « less
-
The effects of nanoscale silver (nAg) particles on subsurface microbial communities can be influenced by the presence of biosurfactants, which have been shown to alter nanoparticle surface properties. Batch and column studies were conducted to investigate the influence of rhamnolipid biosurfactant (1–50 mg L −1 ) on the stability and mobility of silver nanoparticles (16 ± 4 nm) in batch reactors and water-saturated columns with three solution chemistries: pH = 4 and dissolved oxygen concentration (DO) = 8.8 mg L −1 , pH = 7 and DO = 8.8 mg L −1 , pH = 7 and DO = 2.0 mg L −1 . In batch studies, the presence of rhamnolipid (2–50 mg L −1 ) reduced nAg dissolution by 83.3–99.1% under all pH and DO conditions. Improved nAg stability was observed when rhamnolipid was present in batch reactors at pH = 7 ± 0.2, where the hydrodynamic diameter remained constant (∼50 nm) relative to rhamnolipid-free controls (increased to >230 nm) in 48 hours. Column experiments conducted at pH 4.0 ± 0.2 demonstrated that co-injection of nAg with rhamnolipid (2, 5 and 50 mg L −1 ) decreased Ag + breakthrough from ∼22% of total applied mass in rhamnolipid-free columns to less than 8.1% in the presence of rhamnolipid and altered the shape of the nAg retention profile from a hyper-exponential to a uniform distribution. Column experiments performed at pH 7.0 ± 0.2 and DO levels of either ∼2.0 or ∼8.8 mg L −1 showed that co-injection of 5 mg L −1 and 50 mg L −1 rhamnolipid increased nAg mass breakthrough by 25–40% and ∼80%, respectively, enhancements in nAg stability and mobility were attributed to rhamnolipid adsorption on nAg surfaces, which effectively slowed the oxidation and thus release of Ag + , and adsorption of rhamnolipid on the porous medium, which competed for nAg attachment sites. These results indicate that the presence of rhamnolipid significantly influenced nAg dissolution and mobility under dynamic flow conditions. A mathematical model based on modified filtration theory (MFT) accurately reproduced nAg transport and retention behavior when aggregation and reaction processes were minimal and when rhamnolipid was present, providing a tool to predict the effects of biosurfactants on nAg transport in porous media.more » « less
An official website of the United States government

