skip to main content


Title: Catalyst discovery through megalibraries of nanomaterials

The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure–function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.

 
more » « less
NSF-PAR ID:
10081683
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
1
ISSN:
0027-8424
Page Range / eLocation ID:
p. 40-45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inkjet printing is rapidly emerging as a means to fabricate low‐cost electronic devices; however, its widespread adoption is hindered by the complexity of the inks and the relatively high processing temperatures, limiting it to only a few metals and substrates. A new approach for inkjet printing is described, based on commercially available, particle‐free inks formulated from inorganic metal salts and their subsequent low‐temperature conversion to metallic structures by a non‐equilibrium, inert gas plasma. This single, general method is demonstrated for a library of metals including gold (Au), silver (Ag), copper (Cu), palladium (Pd), platinum (Pt), lead (Pb), bismuth (Bi), and tin (Sn). As one figure of merit, the resistivities of the printed metals are measured to be between 2× and 10× of the respective bulk metals. Uniquely, it is found that the printed metal films exhibit a very large surface area because of the plasma‐initiated nucleation and growth process, making this technique attractive for sensing device applications. A Bi‐based trace Pb sensor, an Au‐based amyloid‐β42sensor, and an Au‐based strain gauge are fabricated as representative chemical, biological, and mechanical sensors, and are found to exhibit enhanced sensitivity compared to analogues made with conventional methods.

     
    more » « less
  2. Abstract

    Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data‐driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe‐based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe‐based materials prepared using a simple high‐throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m−1K−2, which is a 75% improvement from the baseline composite (nominal composition of Ag2Se1). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.

     
    more » « less
  3. Abstract

    Iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au–poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au–rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (>500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from δ56Fe values of 0.11 ± 0.07 to 0.16 ± 0.05‰ for Quince and between 0.16 ± 0.03 and 0.42 ± 0.04‰ for Candelaria. Oxygen isotope compositions of magnetite range from δ18O values of 2.65 ± 0.07 to 3.33 ± 0.07‰ for Quince and between 1.16 ± 0.07 and 7.80 ± 0.07‰ for Candelaria. For cogenetic actinolite, δD values range from –41.7 ± 2.10 to –39.0 ± 2.10‰ for Quince and from –93.9 ± 2.10 to –54.0 ± 2.10‰ for Candelaria, and δ18O values range between 5.89 ± 0.23 and 6.02 ± 0.23‰ for Quince and between 7.50 ± 0.23 and 7.69 ± 0.23‰ for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600°–860°C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types.

     
    more » « less
  4. Abstract

    A cantilever‐free scanning probe lithography (CF‐SPL)‐based method for the rapid polymerization of nanoscale features on a surface via crosslinking and thiol‐acrylate photoreactions is described, wherein the nanoscale position, height, and diameter of each feature can be finely and independently tuned. With precise spatiotemporal control over the illumination pattern, beam pen lithography (BPL) allows for the photo‐crosslinking of polymers into ultrahigh resolution features over centimeter‐scale areas using massively parallel >160 000 pen arrays of individually addressable pens that guide and focus light onto the surface with sub‐diffraction resolution. The photoinduced crosslinking reaction of the ink material, which is composed of photoinitiator, diphenyl(2,4,6‐trimethylbenzoyl) phosphine oxide, poly(ethylene glycol) diacrylate, and thiol‐modified functional binding molecules (i.e., thiol‐PEG‐biotin or 16‐mercaptohexanoic acid), proceeds to ≈80% conversion with UV exposure (72 mW cm−2) for short time periods (0.5 s). Such polymer patterns are further reacted with proteins (streptavidin and fibronectin) to yield protein arrays with feature arrangements at high resolution and densities controlled by local UV exposure. This platform, which combines polymer photochemistry and massive arrays of scanning probes, constitutes a new approach to making biomolecular microarrays in a high‐throughput and high‐yielding manner, opening new routes for biochip synthesis, bioscreening, and cell biology research.

     
    more » « less
  5. Abstract

    The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure.

     
    more » « less