skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vibrational Control in Flapping-Wing Micro-Air-Vehicles
Flapping-Wing Micro-Air-Vehicles (FWMAVs) are bio-inspired air vehicles that mimic insect and bird flight. The dynamic behavior of these systems is typically described by a multi-body, multi-time-scale, nonlinear, time-varying dynamical system. Interestingly, this rich dynamics lead to unconventional stabilization mechanisms whose study essentially necessitates a mathematically rigorous analysis. In this paper, we use higherorder averaging, which is based on chronological calculus, to show that insects and their man-made counterparts (FWMAVs) exploit vibrational control to stabilize their body pitching angle. Such an unconventional stabilization cannot be captured by direct averaging. We also experimentally demonstrate such a phenomenon by constructing an experimental setup that allows for two degrees of freedom for the body; forward motion and pitching motion. We measure the response of the body pitching angle using a digital camera and an image processing algorithm at different flapping frequencies. It is found that there is a flapping frequency threshold beyond which the body pitching response is naturally (without feedback) stabilized, which conforms with the vibrational control concept. Moreover, we also construct a replica of the experimental setup with the FWMAV being replaced by a propeller revolving at constant speed, which results in a constant aerodynamic force, leaving no room for vibrational control. The response of the propellersetup is unstable at all frequencies, which also corroborates the fact that the observed stabilization of the FWMAV-setup at high frequencies is a vibrational stabilization phenomenon.  more » « less
Award ID(s):
1709746
PAR ID:
10081739
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
6445-6450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vibrational control is an open loop stabilization technique via the application of highamplitude, high-frequency oscillatory inputs. The averaging theory has been the standard technique for designing vibrational control systems. However, it stipulates too high oscillation frequency that may not be practically feasible. Therefore, although vibrational control is very robust and elegant (stabilization without feedback), it is rarely used in practical applications. The only well-known example is the Kapitza pendulum; an inverted pendulum shose pivot is subject to vertical oscillation. the unstable equilibrium of the inverted pendulum gains asymptotic stability due to the high-frequency oscillation of the pivot. In this paper, we provide a new vibrational control system from Nature; flapping flight dynamics. Flapping flight is a rich dynamical system as a representative model will typically be nonlinear, time-varying, multi-body, multi-time-scale dynamical system. Over the last two decades, using direct averaging, there has been consensus in the flapping flight dynamics community that insects are unstable at the hovering equilibrium due to the lack of pitch stiffness. In this work, we perform higher-order averaging of the time-periodic dynamics of flapping flight to show a vibrational control mechanism due to the oscillation of the driving aerodynamic forces. We also experimentally demonstrate such a phenomenon on a flapping apparatus that has two degrees of freedom: forward translation and pitching motion. It is found that the time-periodic dynamics of the flapping micro-air-vehicle is naturally (without feedback) stabilized beyond a certain threshold. Moreover, if the averaged aerodynamic thrust force is produced by a propeller revolving at a constant speed while maintaining the wings stationary at their mean positions, no stabilization is observed. Hence, it is concluded that the observed stabilization in the flapping system at high frequencies is due to the oscillation of the driving aerodynamic force and, as such, flapping flight indeed enjoys vibrational stabilization. 
    more » « less
  2. Stringent size, weight, and power constraints imposed on flapping-wing micro-air-vehicles (FWMAVs) make their design quite challenging. In particular, the flapping actuating mechanism represents a corner stone in the design of the whole vehicle, if not the most challenging task. In this paper, we provide a review on the several designs of flapping mechanisms in literature and compare their performances. We also provide our design and manufacturing iterations that culminated in a novel design of a FWMAV actuating mechanism that actively controls both the wing flapping (back and forth) and pitching motions using only one drive motor. In this design, we use a parallel crank rocker mechanism. Synthesis and optimization of the parallel crank rockers allowed independent control of the wing flapping and pitching angles. That is, the two angles are allowed to simultaneously follow speci c independent functions using only one drive motor. The designed mechanism is manufactured (3D printed), tested, and found to successfully achieve the desired wing motions that mimic the motion of a hummingbird wing. 
    more » « less
  3. Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling and analysis of such dynamics in the literature has long obstructed the discovery of some of the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing inertial effects and directly averaging the dynamics over the flapping cycle are two major simplifying assumptions that have been extensively used in the literature of flapping flight balance and stability analysis. By relaxing these assumptions and formulating the multi-body dynamics of flapping-wing microair- vehicles in a differential-geometric-control framework, we reveal a vibrational stabilization mechanism that greatly contributes to the body pitch stabilization. The discovered vibrational stabilization mechanism is induced by the interaction between the fast oscillatory aerodynamic loads on the wings and the relatively slow body motion. This stabilizationmechanism provides an artificial stiffness (i.e., spring action) to the body rotation around its pitch axis. Such a spring action is similar to that of Kapitsa pendulum where the unstable inverted pendulum is stabilized through applying fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling and analysis of flapping flight dynamics. 
    more » « less
  4. Because of the wing oscillatory motion with respect to the body, the ight dynam- ics of biological yers as well as their man-made mimetic vehicles, apping-wing micro- air-vehicles (FWMAVs), are typically represented by multi-body, nonlinear time-periodic (NLTP) system models whose balance and stability analyses are quite challenging. In this work, we consider a NLTP system model for a two-degree-of-freedom FWMAV that is con ned to move along vertical rails. We combine tools from chronological calculus, geo- metric control, and averaging to provide a mathematically rigorous analysis for the balance of FWMAVs at hover; that is, relaxing the single-body and direct averaging assumptions that are commonly adopted in analyzing balance and stability of FWMAVs and insects. We also use optimized shooting to numerically capture the resulting periodic orbit and verify the obtained results. Finally, we provide a combined averaging-shooting approach for the balance and stability analysis of NLTP systems that (i) unlike typical shooting methods, does not require an initial guess; (ii) provides more accurate results than the analytical av- eraging approaches, hence relaxing the need for intractable high-order averaged dynamics; and (iii) allows a deeper scrutiny of the system dynamics, in contrast to numerical shooting methods. 
    more » « less
  5. Abstract Flapping-wing micro-air vehicles (FWMAVs) are an emerging technology inspired by flying insects that show promise in applications favoring maneuverability and vehicle compactness. However, current designs are limited by inefficient energetics, and current dynamical models of the flight system employ limiting assumptions when considering power demands. Here, we derive a system-level model of the insect flight system including the thorax, wing, and wing hinge that can inform insect-inspired FWMAV design. We applied the model to study the flight system of a hawkmoth, and used a genetic algorithm optimization to tune uncertain model parameters to minimize the power required to hover. Results show that performance is improved by utilizing multimodal excitation to produce favorable flapping kinematics. This is achieved by locating the flapping frequency of the moth between the nonlinear resonant frequencies, resulting in magnified flapping response and aerodynamically advantageous phase. The optimal flapping frequency can be predicted from the system’s underlying linear natural frequencies and is roughly 54% of the system’s mean natural frequency. Furthermore, effective solutions are configured so that the timing of the applied load and thorax responses are matched such that little effort is spent reversing the wing stroke. The optimized model parameters and corresponding kinematics show moderate agreement with those reported for the hawkmoth. To maintain hovering flight, the successful moths in the population expend approximately 58.5 W/kg. The system-level model and the governing principles identified here can inform the design of energy efficient FWMAVs moving forward. 
    more » « less