- Award ID(s):
- 1763906
- PAR ID:
- 10111195
- Date Published:
- Journal Name:
- ACM SIGSOFT International Symposium on Software Testing and Analysis
- Page Range / eLocation ID:
- 19 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Generate-and-validate (G&V) automated program repair (APR) techniques have been extensively studied during the past decade. Meanwhile, such techniques can be extremely time-consuming due to the manipulation of program code to fabricate a large number of patches and also the repeated test executions on patches to identify potential fixes. PraPR, a recent G&V APR technique, reduces such costs by modifying program code directly at the level of compiled JVM bytecode with on-the-fly patch validation, which directly allows multiple bytecode patches to be tested within the same JVM process. However, PraPR is limited due to its unique bytecode-repair design, and is basically unsound/imprecise as it assumes that patch executions do not change global JVM state and affect later patch executions on the same JVM process. In this paper, we propose a unified patch validation framework, named UniAPR, to perform the first empirical study of on-the-fly patch validation for state-of-the-art source-code-level APR techniques widely studied in the literature; furthermore, UniAPR addresses the imprecise patch validation issue by resetting the JVM global state via runtime bytecode transformation. We have implemented UniAPR as a publicly available fully automated Maven Plugin. Our study demonstrates for the first time that on-the-fly patch validation can often speed up state-of-the-art source-code-level APR by over an order of magnitude, enabling all existing APR techniques to explore a larger search space to fix more bugs in the near future. Furthermore, our study shows the first empirical evidence that vanilla on-the-fly patch validation can be imprecise/unsound, while UniAPR with JVM reset is able to mitigate such issues with negligible overhead.more » « less
-
Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects.more » « less
-
The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal importance imposes strict stability and correctness requirements. These properties make Linux a challenging and relevant target for static automated program repair (APR).
Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR techniques do not translate naturally to systems without tests. We present a static APR technique addressing sequential
locking API misuse bugs in the Linux Kernel. We attack the key challenge of static APR, namely, the lack of detailed program specification, by combining static analysis with machine learning to complement the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel, we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches, and automatically rank them among the top three candidates for 64% of the cases and among the top five for 74%. -
Rudolph, Günter ; Konova, Anna ; Aguirre, Hernán ; Kerschke, Pascal ; Ochoa, G. ; Tušar, Tea (Ed.)Search-based methods are a popular approach for automatically repairing software bugs, a field known as automated program repair (APR). There is increasing interest in empirical evaluation and comparison of different APR methods, typically measured as the rate of successful repairs on benchmark sets of buggy programs. Such evaluations, however, fail to explain why some approaches succeed and others fail. Because these methods typically use syntactic representations, i.e., source code, we know little about how the different methods explore their semantic spaces, which is relevant for assessing repair quality and understanding search dynamics. We propose an automated method based on program semantics, which provides quantitative and qualitative information about different APR search-based techniques. Our approach requires no manual annotation and produces both mathematical and human-understandable insights. In an empirical evaluation of 4 APR tools and 34 defects, we investigate the relationship between search-space exploration, semantic diversity and repair success, examining both the overall picture and how the tools’ search unfolds. Our results suggest that population diversity alone is not sufficient for finding repairs, and that searching in the right place is more important than searching broadly, highlighting future directions for the research communitymore » « less
-
Industrial deployments of automated program repair (APR), e.g., at Facebook and Bloomberg, signal a new milestone for this exciting and potentially impactful technology. In these deployments, developers use APR-generated patch suggestions as part of a human-driven debugging process. Unfortunately, little is known about how using patch suggestions affects developers during debugging. This paper conducts a controlled user study with 40 developers with a median of 6 years of experience. The developers engage in debugging tasks on nine naturally-occurring defects in real-world, open-source, Java projects, using Recoder, SimFix, and TBar, three state-of-the-art APR tools. For each debugging task, the developers either have access to the project's tests, or, also, to code suggestions that make all the tests pass. These suggestions are either developer-written or APR-generated, which can be correct or deceptive. Deceptive suggestions, which are a common APR occurrence, make all the available tests pass but fail to generalize to the intended specification. Through a total of 160 debugging sessions, we find that access to a code suggestion significantly increases the odds of submitting a patch. Correct APR suggestions increase the odds of debugging success by 14,000%, but deceptive suggestions decrease the odds of success by 65%. Correct suggestions also speed up debugging. Surprisingly, we observe no significant difference in how novice and experienced developers are affected by APR, suggesting that APR may find uses across the experience spectrum. Overall, developers come away with a strong positive impression of APR, suggesting promise for APR-mediated, human-driven debugging, despite existing challenges in APR-generated repair quality.more » « less