skip to main content

Title: Modeling the physiology of the aquatic temnospondyl <i>Archegosaurusdecheni</i> from the early Permian of Germany

Abstract. Physiological aspects like heat balance, gas exchange, osmoregulation, and digestion of the early Permian aquatic temnospondyl Archegosaurus decheni, which lived in a tropical freshwater lake, are assessed based on osteological correlates of physiologically relevant soft-tissue organs and by physiological estimations analogous to air-breathing fishes. Body mass (M) of an adult Archegosaurus with an overall body length of more than 1m is estimated as 7kg using graphic double integration. Standard metabolic rate (SMR) at 20°C (12kJh−1) and active metabolic rate (AMR) at 25°C (47kJh−1) were estimated according to the interspecific allometry of metabolic rate (measured as oxygen consumption) of all fish (VO2 = 4. 8M0. 88) and form the basis for most of the subsequent estimations. Archegosaurus is interpreted as a facultative air breather that got O2 from the internal gills at rest in well-aerated water but relied on its lungs for O2 uptake in times of activity and hypoxia. The bulk of CO2 was always eliminated via the gills. Our estimations suggest that if Archegosaurus did not have gills and released 100% CO2 from its lungs, it would have to breathe much more frequently to release enough CO2 relative to the lung ventilation required for more » just O2 uptake. Estimations of absorption and assimilation in the digestive tract of Archegosaurus suggest that an adult had to eat about six middle-sized specimens of the acanthodian fish Acanthodes (ca. 8cm body length) per day to meet its energy demands. Archegosaurus is regarded as an ammonotelic animal that excreted ammonia (NH3) directly to the water through the gills and the skin, and these diffusional routes dominated nitrogen excretion by the kidneys as urine. Osmotic influx of water through the gills had to be compensated for by production of dilute, hypoosmotic urine by the kidneys. Whereas Archegosaurus has long been regarded as a salamander-like animal, there is evidence that its physiology was more fish- than tetrapod-like in many respects.

« less
Award ID(s):
Publication Date:
Journal Name:
Fossil Record
Page Range or eLocation-ID:
105 to 127
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We assessed the influence of the marine diazotrophic cyanobacterium Trichodesmium on the bio-optical properties of western tropical South Pacific (WTSP) waters (18–22°S, 160°E–160°W) during the February–March 2015 OUTPACE cruise. We performed measurements of backscattering and absorption coefficients, irradiance, and radiance in the euphotic zone with a Satlantic MicroPro free-fall profiler and took Underwater Vision Profiler 5 (UPV5) pictures for counting the largest Trichodesmium spp. colonies. Pigment concentrations were determined by fluorimetry and high-performance liquid chromatography and picoplankton abundance by flow cytometry. Trichome concentration was estimated from pigment algorithms and validated by surface visual counts. The abundance of large colonies counted by the UVP5 (maximum 7093coloniesm−3) was well correlated to the trichome concentrations (maximum 2093trichomesL−1) with an aggregation factor of 600. In the Melanesian archipelago, a maximum of 4715trichomesL−1 was enumerated in pump samples (3.2m) at 20°S,16730°E. High Trichodesmium abundance was always associated with absorption peaks of mycosporine-like amino acids (330, 360nm) and high particulate backscattering, but not with high Chl a fluorescence or blue particulate absorption (440nm). Along the west-to-east transect, Trichodesmium together with Prochlorococcus represented the major part of total chlorophyll concentration; themore »contribution of other groups were relatively small or negligible. The Trichodesmium contribution to total chlorophyll concentration was the highest in the Melanesian archipelago around New Caledonia and Vanuatu (60%), progressively decreased to the vicinity of the islands of Fiji (30%), and reached a minimum in the South Pacific Gyre where Prochlorococcus dominated chlorophyll concentration. The contribution of Trichodesmium to zeaxanthin was respectively 50, 40 and 20% for these regions. During the OUTPACE cruise, the relationship between normalized water-leaving radiance (nLw) in the ultraviolet and visible and chlorophyll concentration was similar to that found during the BIOSOPE cruise in the eastern tropical Pacific. Principal component analysis (PCA) of OUTPACE data showed that nLw at 305, 325, 340, 380, 412 and 440nm was strongly correlated to chlorophyll and zeaxanthin, while nLw at 490 and 565nm exhibited lower correlations. These results, as well as differences in the PCA of BIOSOPE data, indicated that nLw variability in the greenish blue and yellowish green during OUTPACE was influenced by other variables associated with Trichodesmium presence, such as backscattering coefficient, phycoerythrin fluorescence and/or zeaxanthin absorption, suggesting that Trichodesmium detection should involve examination of nLw in this spectral domain.

    « less
  2. Abstract. We present the development and assessment of a new flight system that uses acommercially available continuous-wave, tunable infrared laser directabsorption spectrometer to measure N2O, CO2, CO, andH2O. When the commercial system is operated in an off-the-shelfmanner, we find a clear cabin pressure–altitude dependency forN2O, CO2, and CO. The characteristics of this artifactmake it difficult to reconcile with conventional calibration methods. Wepresent a novel procedure that extends upon traditional calibrationapproaches in a high-flow system with high-frequency, short-duration samplingof a known calibration gas of near-ambient concentration. This approachcorrects for cabin pressure dependency as well as other sources of drift inthe analyzer while maintaining a ∼90% duty cycle for 1Hz sampling.Assessment and validation of the flight system with both extensive in-flightcalibrations and comparisons with other flight-proven sensors demonstrate thevalidity of this method. In-flight 1σ precision is estimated at0.05ppb, 0.10ppm, 1.00ppb, and 10ppm for N2O,CO2, CO, and H2O respectively, and traceability to WorldMeteorological Organization (WMO) standards (1σ) is 0.28ppb,0.33ppm, and 1.92ppb for N2O, CO2, and CO. We showthe system is capable of precise, accurate 1Hz airborne observations ofN2O, more »class="inline-formula">CO2, CO, and H2O and highlight flightdata, illustrating the value of this analyzer for studying N2Oemissions on ∼100km spatial scales.

    « less
  3. Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15C,20C and 24C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulationmore »of calcification washigher in the HC-grown cells at 15 and 20C, whereas at24C observed enhancement was not significant. The calcificationto photosynthesis ratio (CalPho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24C, exposure to UVR significantly increased the CalPhoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe CalPho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi.

    « less
  4. Abstract. The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63±0.07nmolNL−1d−1) but consistently detected across all depths and stations, representing ∼ 6–88% of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subclustermore »1G dominated at 650dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area and/or areas downstream of water mass circulation.

    « less
  5. Abstract. Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42−)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323µg m−3 with a mean of (141  ±  88 (1σ))µg m−3, with SO42− representing 8–25% of PM2.5 mass. The observed Δ17O(SO42−) varied from 0.1 to 1.6‰ with a mean of (0.9  ±  0.3)‰. Δ17O(SO42−) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75µg m−3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68%. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet) was estimated to contribute 41–54% to total sulfate formation with a mean of (48  ±  5)%. For the specific mechanisms of heterogeneous oxidation of SO2, chemicalmore »reaction kinetics calculations suggested S(IV) ( = SO2 ⚫H2O+HSO3  +  SO32−) oxidation by H2O2 in aerosol water accounted for 5–13% of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21–22% of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66–73% of Phet. The assumption about the thermodynamic state of aerosols (stable or metastable) was found to significantly influence the calculated aerosol pH (7.6  ±  0.1 or 4.7  ±  1.1, respectively), and thus influence the relative importance of heterogeneous sulfate production via S(IV) oxidation by NO2 and by O2. Our local atmospheric conditions-based calculations suggest sulfate formation via NO2 oxidation can be the dominant pathway in aerosols at high-pH conditions calculated assuming stable state while S(IV) oxidation by O2 can be the dominant pathway providing that highly acidic aerosols (pH ≤ 3) exist. Our local atmospheric-conditions-based calculations illustrate the utility of Δ17O(SO42−) for quantifying sulfate formation pathways, but this estimate may be further improved with future regional modeling work.

    « less