skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Velocity-Curvature Patterns Limit Human-Robot Physical Interaction
Physical human–robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human–robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and nonbiological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (twothirds power law) or nonbiological velocity profiles. Participants were instructed to minimize the force applied on the robot endeffector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a nonbiological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human–robot physical collaboration.  more » « less
Award ID(s):
1637854
PAR ID:
10082099
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE robotics & automation letters
Volume:
3
Issue:
1
ISSN:
2377-3766
Page Range / eLocation ID:
249-256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An important component for the effective collaboration of humans with robots is the compatibility of their movements, especially when humans physically collaborate with a robot partner. Following previous findings that humans interact more seamlessly with a robot that moves with humanlike or biological velocity profiles, this study examined whether humans can adapt to a robot that violates human signatures. The specific focus was on the role of extensive practice and realtime augmented feedback. Six groups of participants physically tracked a robot tracing an ellipse with profiles where velocity scaled with the curvature of the path in biological and nonbiological ways, while instructed to minimize the interaction force with the robot. Three of the 6 groups received real-time visual feedback about their force error. Results showed that with 3 daily practice sessions, when given feedback about their force errors, humans could decrease their interaction forces when the robot’s trajectory violated human-like velocity patterns. Conversely, when augmented feedback was not provided, there were no improvements despite this extensive practice. The biological profile showed no improvements, even with feedback, indicating that the (non-zero) force had already reached a floor level. These findings highlight the importance of biological robot trajectories and augmented feedback to guide humans to adapt to non-biological movements in physical human-robot interaction. These results have implications on various fields of robotics, such as surgical applications and collaborative robots for industry. 
    more » « less
  2. Effective physical human-robot interaction (pHRI) depends on how humans can communicate their intentions for movement with others. While it is speculated that small interaction forces contain significant information to convey the specific movement intention of physical humanhuman interaction (pHHI), the underlying mechanism for humans to infer intention from such small forces is largely unknown. The hypothesis in this work is that the sensitivity to a small interaction force applied at the hand is affected by the movement of the arm that is affected by the arm stiffness. For this, a haptic robot was used to provide the endpoint interaction forces to the arm of seated human participants. They were asked to determine one of the four directions of the applied robot interaction force without visual feedback. Variations of levels of interaction force as well as arm muscle contraction were applied. The results imply that human’s ability to identify and respond to the correct direction of small interaction forces was lower when the alignment of human arm movement with respect to the force direction was higher. In addition, the sensitivity to the direction of the small interaction force was high when the arm stiffness was low. It is also speculated that humans lower their arm stiffness to be more sensitive to smaller interaction forces. These results will help develop human-like pHRI systems for various applications. 
    more » « less
  3. Humans have an astonishing ability to extract hidden information from the movements of others. For example, even with limited kinematic information, humans can distinguish between biological and nonbiological motion, identify the age and gender of a human demonstrator, and recognize what action a human demonstrator is performing. It is unknown, however, whether they can also estimate hidden mechanical properties of another’s limbs simply by observing their motions. Strictly speaking, identifying an object’s mechanical properties, such as stiffness, requires contact. With only motion information, unambiguous measurements of stiffness are fundamentally impossible, since the same limb motion can be generated with an infinite number of stiffness values. However, we show that humans can readily estimate the stiffness of a simulated limb from its motion. In three experiments, we found that participants linearly increased their rating of arm stiffness as joint stiffness parameters in the arm controller increased. This was remarkable since there was no physical contact with the simulated limb. Moreover, participants had no explicit knowledge of how the simulated arm was controlled. To successfully map nontrivial changes in multijoint motion to changes in arm stiffness, participants likely drew on prior knowledge of human neuromotor control. Having an internal representation consistent with the behavior of the controller used to drive the simulated arm implies that this control policy competently captures key features of veridical biological control. Finding that humans can extract latent features of neuromotor control from kinematics also provides new insight into how humans interpret the motor actions of others. NEW & NOTEWORTHY Humans can visually perceive another’s overt motion, but it is unknown whether they can also perceive the hidden dynamic properties of another’s limbs from their motions. Here, we show that humans can correctly infer changes in limb stiffness from nontrivial changes in multijoint limb motion without force information or explicit knowledge of the underlying limb controller. Our findings suggest that humans presume others control motor behavior in such a way that limb stiffness influences motion. 
    more » « less
  4. Exoskeleton robots are capable of safe torque- controlled interactions with a wearer while moving their limbs through pre-defined trajectories. However, affecting and assist- ing the wearer’s movements while incorporating their inputs (effort and movements) effectively during an interaction re- mains an open problem due to the complex and variable nature of human motion. In this paper, we present a control algorithm that leverages task-specific movement behaviors to control robot torques during unstructured interactions by implementing a force field that imposes a desired joint angle coordination behavior. This control law, built by using principal component analysis (PCA), is implemented and tested with the Harmony exoskeleton. We show that the proposed control law is versatile enough to allow for the imposition of different coordination behaviors with varying levels of impedance stiffness. We also test the feasibility of our method for unstructured human-robot interaction. Specifically, we demonstrate that participants in a human-subject experiment are able to effectively perform reaching tasks while the exoskeleton imposes the desired joint coordination under different movement speeds and interaction modes. Survey results further suggest that the proposed control law may offer a reduction in cognitive or motor effort. This control law opens up the possibility of using the exoskeleton for training the participating in accomplishing complex m 
    more » « less
  5. This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI. 
    more » « less