Isometric force generation and kinematic reaching in the upper extremity has been found to be represented by a limited number of muscle synergies, even across task-specific variations. However, the extent of the generalizability of muscle synergies between these two motor tasks within the arm workspace remains unknown. In this study, we recorded electromyographic (EMG) signals from 13 different arm, shoulder, and back muscles of ten healthy individuals while they performed isometric and kinematic center-out target matches to one of 12 equidistant directional targets in the horizontal plane and at each of four starting arm positions. Non-negative matrix factorization was applied to the EMG data to identify the muscle synergies. Five and six muscle synergies were found to represent the isometric force generation and point-to-point reaches. We also found that the number and composition of muscle synergies were conserved across the arm workspace per motor task. Similar tuning directions of muscle synergy activation profiles were observed at different starting arm locations. Between the isometric and kinematic motor tasks, we found that two to four out of five muscle synergies were common in the composition and activation profiles across the starting arm locations. The greater number of muscle synergies that were involved in achieving a target match in the reaching task compared to the isometric task may explain the complexity of neuromotor control in arm reaching movements. Overall, our results may provide further insight into the neuromotor compartmentalization of shared muscle synergies between two different arm motor tasks and can be utilized to assess motor disabilities in individuals with upper limb motor impairments.
more »
« less
Visual perception of joint stiffness from multijoint motion
Humans have an astonishing ability to extract hidden information from the movements of others. For example, even with limited kinematic information, humans can distinguish between biological and nonbiological motion, identify the age and gender of a human demonstrator, and recognize what action a human demonstrator is performing. It is unknown, however, whether they can also estimate hidden mechanical properties of another’s limbs simply by observing their motions. Strictly speaking, identifying an object’s mechanical properties, such as stiffness, requires contact. With only motion information, unambiguous measurements of stiffness are fundamentally impossible, since the same limb motion can be generated with an infinite number of stiffness values. However, we show that humans can readily estimate the stiffness of a simulated limb from its motion. In three experiments, we found that participants linearly increased their rating of arm stiffness as joint stiffness parameters in the arm controller increased. This was remarkable since there was no physical contact with the simulated limb. Moreover, participants had no explicit knowledge of how the simulated arm was controlled. To successfully map nontrivial changes in multijoint motion to changes in arm stiffness, participants likely drew on prior knowledge of human neuromotor control. Having an internal representation consistent with the behavior of the controller used to drive the simulated arm implies that this control policy competently captures key features of veridical biological control. Finding that humans can extract latent features of neuromotor control from kinematics also provides new insight into how humans interpret the motor actions of others. NEW & NOTEWORTHY Humans can visually perceive another’s overt motion, but it is unknown whether they can also perceive the hidden dynamic properties of another’s limbs from their motions. Here, we show that humans can correctly infer changes in limb stiffness from nontrivial changes in multijoint limb motion without force information or explicit knowledge of the underlying limb controller. Our findings suggest that humans presume others control motor behavior in such a way that limb stiffness influences motion.
more »
« less
- PAR ID:
- 10124213
- Date Published:
- Journal Name:
- Journal of Neurophysiology
- Volume:
- 122
- Issue:
- 1
- ISSN:
- 0022-3077
- Page Range / eLocation ID:
- 51 to 59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a biomechanics‐based, user‐adaptive variable impedance controller designed to enhance the performance of coupled human–robot systems during motion. The controller integrates the biomechanical characteristics of human limbs and dynamically adjusts the robotic impedance parameters—specifically damping, stiffness, and equilibrium trajectory—based on real‐time estimations of the user's intent and direction of motion. The primary goal is to minimize the energy expenditure of the coupled human–robot system while maintaining system passivity. To address uncertainties in human behavior and noisy observations, the controller employs Bayesian optimization combined with a Gaussian process. To validate the proposed approach, human experiments are conducted using a standard robotic arm manipulator. The results demonstrate that the controller eliminates the need for manual parameter tuning, a process that is typically time‐consuming. A comparative analysis against two variable impedance controllers without user‐adaptive parameter adjustments reveal significant benefits, with the controller improving combined performance metrics—such as accuracy, speed, user effort, and smoothness—by over 13%. Notably, all participants in the study preferred the optimized controller over the alternatives. These findings highlight the effectiveness of the biomechanics‐based, user‐adaptive variable impedance control approach and its potential to enhance physical human–robot interaction in various applications that involve repetitive or continuous motion.more » « less
-
Abstract Humans can physically interact with other humans adeptly. Some overground interaction tasks, such as guiding a partner across a room, occur without visual and verbal communication, which suggests that the information exchanges occur through sensing movements and forces. To understand the process of motor communication during overground physical interaction, we hypothesized that humans modulate the mechanical properties of their arms for increased awareness and sensitivity to ongoing interaction. For this, we used an overground interactive robot to guide a human partner across one of three randomly chosen paths while occasionally providing force perturbations to measure the arm stiffness. We observed that the arm stiffness was lower at instants when the robot’s upcoming trajectory was unknown compared to instants when it was predicable - the first evidence of arm stiffness modulation for better motor communication during overground physical interaction.more » « less
-
null (Ed.)Abstract Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.more » « less
-
Individuals with paralyzed limbs due to spinal cord injuries lack the ability to perform the reaching motions necessary to every day life. Functional electrical stimulation (FES) is a promising technology for restoring reaching movements to these individuals by reanimating their paralyzed muscles. We have proposed using a quasi-static model-based control strategy to achieve reaching controlled by FES. This method uses a series of static positions to connect the starting wrist position to the goal. As a first step to implementing this controller, we have completed a simulated study using a MATLAB based dynamic model of the arm in order to determine the suitable parameters for the quasi-static controller. The selected distance between static positions in the path was 6 cm, and the amount of time between switching target positions was 1.3 s. The final controller can complete reaches of over 30 cm with a median accuracy of 6.8 cm.more » « less