skip to main content

Title: Visual perception of joint stiffness from multijoint motion
Humans have an astonishing ability to extract hidden information from the movements of others. For example, even with limited kinematic information, humans can distinguish between biological and nonbiological motion, identify the age and gender of a human demonstrator, and recognize what action a human demonstrator is performing. It is unknown, however, whether they can also estimate hidden mechanical properties of another’s limbs simply by observing their motions. Strictly speaking, identifying an object’s mechanical properties, such as stiffness, requires contact. With only motion information, unambiguous measurements of stiffness are fundamentally impossible, since the same limb motion can be generated with an infinite number of stiffness values. However, we show that humans can readily estimate the stiffness of a simulated limb from its motion. In three experiments, we found that participants linearly increased their rating of arm stiffness as joint stiffness parameters in the arm controller increased. This was remarkable since there was no physical contact with the simulated limb. Moreover, participants had no explicit knowledge of how the simulated arm was controlled. To successfully map nontrivial changes in multijoint motion to changes in arm stiffness, participants likely drew on prior knowledge of human neuromotor control. Having an internal representation consistent with the behavior of the controller used to drive the simulated arm implies that this control policy competently captures key features of veridical biological control. Finding that humans can extract latent features of neuromotor control from kinematics also provides new insight into how humans interpret the motor actions of others. NEW & NOTEWORTHY Humans can visually perceive another’s overt motion, but it is unknown whether they can also perceive the hidden dynamic properties of another’s limbs from their motions. Here, we show that humans can correctly infer changes in limb stiffness from nontrivial changes in multijoint limb motion without force information or explicit knowledge of the underlying limb controller. Our findings suggest that humans presume others control motor behavior in such a way that limb stiffness influences motion.  more » « less
Award ID(s):
1724135 1637824 1826097
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Neurophysiology
Page Range / eLocation ID:
51 to 59
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Muscle weakness and loss of independent joint control are the 2 most common neuromotor impairments after stroke. While there are a number of approaches to improve poststroke muscle weakness, there are currently no rehabilitation strategies that directly target a patient’s inability to match and independently activate the normal patterned muscle coordination strategies, or “muscle synergies.” Our goal is to develop an EMG-based controller for retraining healthy muscle synergies in patients with stroke-related disabilities. The controller can be integrated into rehabilitation robots for their ability to structure the robot’s force output based on input EMG activity. However, developing such a controller would require a clear understanding of the relationship between the applied force from a rehabilitation robot and the resulting changes to a patient’s muscle synergies. Therefore, this study was performed to quantify how the muscle synergies of horizontal planar-reaching are affected by direction of an applied force at the end-effector (ie, hand). A 2 DOF, 10 muscle model was developed in MATLAB using parameters obtained from the OpenSim (version 3.3) open source software system. Simulation experiments were then performed in MATLAB to investigate the relationship between the applied force and the resulting muscle synergies. The simulated event was composed of several trials of the same righthanded, planar, multidirectional reaching task from 0° (to the right) to 360°. Each trial applied a different steering force direction at the subject’s hand, varying from −45° to 45° relative to the reaching direction. The simulation trials were also validated by evaluating the EMG patterns of a healthy subject when performing the same reaching task with varying steering force directions. For the 0° steering force trials, the muscle synergies and their activation timings were extracted using nonnegative matrix factorization (NMF). For all other trials, the synergy matrix was fixed and the activation timings were extracted from the product of the EMG of that trial and the pseudo-inverse of the synergy matrix from the 0° steering force trial. By fixing the synergy matrix in the trials with steering forces, we can directly track activation changes of a certain synergy as steering force is varied. For both simulation and experimental trials, circular statistics revealed a linear relationship between changes in steering force direction and principal direction of synergy activation. These results suggest that the activation of a synergy can be controlled directly by the direction of an applied steering force. This has relevant implications in synergy-based controller design because a computer can easily manipulate a patient’s muscle synergies and track the changes while avoiding the computational expense of NMF. In addition, similar analysis could be used to extract the relationship between applied forces and changes in synergies for other types of motion. 
    more » « less
  2. Abstract Humans are adept at a wide variety of motor skills, including the handling of complex objects and using tools. Advances to understand the control of voluntary goal-directed movements have focused on simple behaviors such as reaching, uncoupled to any additional object dynamics. Under these simplified conditions, basic elements of motor control, such as the roles of body mechanics, objective functions, and sensory feedback, have been characterized. However, these elements have mostly been examined in isolation, and the interactions between these elements have received less attention. This study examined a task with internal dynamics, inspired by the daily skill of transporting a cup of coffee, with additional expected or unexpected perturbations to probe the structure of the controller. Using optimal feedback control (OFC) as the basis, it proved necessary to endow the model of the body with mechanical impedance to generate the kinematic features observed in the human experimental data. The addition of mechanical impedance revealed that simulated movements were no longer sensitively dependent on the objective function, a highly debated cornerstone of optimal control. Further, feedforward replay of the control inputs was similarly successful in coping with perturbations as when feedback, or sensory information, was included. These findings suggest that when the control model incorporates a representation of the mechanical properties of the limb, that is, embodies its dynamics, the specific objective function and sensory feedback become less critical, and complex interactions with dynamic objects can be successfully managed. 
    more » « less
  3. Isometric force generation and kinematic reaching in the upper extremity has been found to be represented by a limited number of muscle synergies, even across task-specific variations. However, the extent of the generalizability of muscle synergies between these two motor tasks within the arm workspace remains unknown. In this study, we recorded electromyographic (EMG) signals from 13 different arm, shoulder, and back muscles of ten healthy individuals while they performed isometric and kinematic center-out target matches to one of 12 equidistant directional targets in the horizontal plane and at each of four starting arm positions. Non-negative matrix factorization was applied to the EMG data to identify the muscle synergies. Five and six muscle synergies were found to represent the isometric force generation and point-to-point reaches. We also found that the number and composition of muscle synergies were conserved across the arm workspace per motor task. Similar tuning directions of muscle synergy activation profiles were observed at different starting arm locations. Between the isometric and kinematic motor tasks, we found that two to four out of five muscle synergies were common in the composition and activation profiles across the starting arm locations. The greater number of muscle synergies that were involved in achieving a target match in the reaching task compared to the isometric task may explain the complexity of neuromotor control in arm reaching movements. Overall, our results may provide further insight into the neuromotor compartmentalization of shared muscle synergies between two different arm motor tasks and can be utilized to assess motor disabilities in individuals with upper limb motor impairments.

    more » « less
  4. Effective physical human-robot interaction (pHRI) depends on how humans can communicate their intentions for movement with others. While it is speculated that small interaction forces contain significant information to convey the specific movement intention of physical humanhuman interaction (pHHI), the underlying mechanism for humans to infer intention from such small forces is largely unknown. The hypothesis in this work is that the sensitivity to a small interaction force applied at the hand is affected by the movement of the arm that is affected by the arm stiffness. For this, a haptic robot was used to provide the endpoint interaction forces to the arm of seated human participants. They were asked to determine one of the four directions of the applied robot interaction force without visual feedback. Variations of levels of interaction force as well as arm muscle contraction were applied. The results imply that human’s ability to identify and respond to the correct direction of small interaction forces was lower when the alignment of human arm movement with respect to the force direction was higher. In addition, the sensitivity to the direction of the small interaction force was high when the arm stiffness was low. It is also speculated that humans lower their arm stiffness to be more sensitive to smaller interaction forces. These results will help develop human-like pHRI systems for various applications. 
    more » « less
  5. Physical interaction with tools is ubiquitous in functional activities of daily living. While tool use is considered a hallmark of human behavior, how humans control such physical interactions is still poorly understood. When humans perform a motor task, it is commonly suggested that the central nervous system coordinates the musculo-skeletal system to minimize muscle effort. In this paper, we tested if this notion holds true for motor tasks that involve physical interaction. Specifically, we investigated whether humans minimize muscle forces to control physical interaction with a circular kinematic constraint. Using a simplified arm model, we derived three predictions for how humans should behave if they were minimizing muscular effort to perform the task. First, we predicted that subjects would exert workless, radial forces on the constraint. Second, we predicted that the muscles would be deactivated when they could not contribute to work. Third, we predicted that when moving very slowly along the constraint, the pattern of muscle activity would not differ between clockwise (CW) and counterclockwise (CCW) motions. To test these predictions, we instructed human subjects to move a robot handle around a virtual, circular constraint at a constant tangential velocity. To reduce the effect of forces that might arise from incomplete compensation of neuro-musculo-skeletal dynamics, the target tangential speed was set to an extremely slow pace (~1 revolution every 13.3 seconds). Ultimately, the results of human experiment did not support the predictions derived from our model of minimizing muscular effort. While subjects did exert workless forces, they did not deactivate muscles as predicted. Furthermore, muscle activation patterns differed between CW and CCW motions about the constraint. These findings demonstrate that minimizing muscle effort is not a significant factor in human performance of this constrained-motion task. Instead, the central nervous system likely prioritizes reducing other costs, such as computational effort, over muscle effort to control physical interactions. 
    more » « less