Physical human–robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human–robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and nonbiological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (twothirds power law) or nonbiological velocity profiles. Participants were instructed to minimize the force applied on the robot endeffector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a nonbiological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human–robot physical collaboration.
more »
« less
Humans Need Augmented Feedback to Physically Track Non-Biological Robot Movements
An important component for the effective collaboration of humans with robots is the compatibility of their movements, especially when humans physically collaborate with a robot partner. Following previous findings that humans interact more seamlessly with a robot that moves with humanlike or biological velocity profiles, this study examined whether humans can adapt to a robot that violates human signatures. The specific focus was on the role of extensive practice and realtime augmented feedback. Six groups of participants physically tracked a robot tracing an ellipse with profiles where velocity scaled with the curvature of the path in biological and nonbiological ways, while instructed to minimize the interaction force with the robot. Three of the 6 groups received real-time visual feedback about their force error. Results showed that with 3 daily practice sessions, when given feedback about their force errors, humans could decrease their interaction forces when the robot’s trajectory violated human-like velocity patterns. Conversely, when augmented feedback was not provided, there were no improvements despite this extensive practice. The biological profile showed no improvements, even with feedback, indicating that the (non-zero) force had already reached a floor level. These findings highlight the importance of biological robot trajectories and augmented feedback to guide humans to adapt to non-biological movements in physical human-robot interaction. These results have implications on various fields of robotics, such as surgical applications and collaborative robots for industry.
more »
« less
- Award ID(s):
- 1825942
- PAR ID:
- 10465771
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- Page Range / eLocation ID:
- 9872 to 9878
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Humans can physically interact with other humans adeptly. Some overground interaction tasks, such as guiding a partner across a room, occur without visual and verbal communication, which suggests that the information exchanges occur through sensing movements and forces. To understand the process of motor communication during overground physical interaction, we hypothesized that humans modulate the mechanical properties of their arms for increased awareness and sensitivity to ongoing interaction. For this, we used an overground interactive robot to guide a human partner across one of three randomly chosen paths while occasionally providing force perturbations to measure the arm stiffness. We observed that the arm stiffness was lower at instants when the robot’s upcoming trajectory was unknown compared to instants when it was predicable - the first evidence of arm stiffness modulation for better motor communication during overground physical interaction.more » « less
-
Articulated robots are attracting the attention of artists worldwide. Due to their precise, tireless, and efficient nature, robots are now being deployed in different forms of creative expression, such as sculpting, choreography, immersive environments, and cinematography. While there is a growing interest among artists in robotics, programming such machines is a challenge for most professionals in the field, as robots require extensive coding experience and are primarily designed for industrial applications and environments. To enable artists to incorporate robots in their projects, we propose an end-user-friendly robot programming solution using an intuitive spatial computing environment designed for Microsoft Hololens 2. In our application, the robot movements are synchronized with a hologram via network communication. Using natural hand gestures, users can manipulate, animate, and record the hologram similar to 3D animation software, including the advantages of mixed reality interaction. Our solution not only gives artists the ability to translate their creative ideas and movements to an industrial machine but also makes human-robot interaction safer, as robots can now be accurately and effectively operated from a distance. We consider this an important step in a more human-driven robotics community, allowing creators without robot programming experience to easily script and perform complex sequences of robotic movement in service of new arts applications. Making robots more collaborative and safer for humans to interact with dramatically increases their utility, exposure, and potential for social interaction, opens new markets, expands creative industries, and directly locates them in highly visible public spaces.more » « less
-
Effective physical human-robot interaction (pHRI) depends on how humans can communicate their intentions for movement with others. While it is speculated that small interaction forces contain significant information to convey the specific movement intention of physical humanhuman interaction (pHHI), the underlying mechanism for humans to infer intention from such small forces is largely unknown. The hypothesis in this work is that the sensitivity to a small interaction force applied at the hand is affected by the movement of the arm that is affected by the arm stiffness. For this, a haptic robot was used to provide the endpoint interaction forces to the arm of seated human participants. They were asked to determine one of the four directions of the applied robot interaction force without visual feedback. Variations of levels of interaction force as well as arm muscle contraction were applied. The results imply that human’s ability to identify and respond to the correct direction of small interaction forces was lower when the alignment of human arm movement with respect to the force direction was higher. In addition, the sensitivity to the direction of the small interaction force was high when the arm stiffness was low. It is also speculated that humans lower their arm stiffness to be more sensitive to smaller interaction forces. These results will help develop human-like pHRI systems for various applications.more » « less
-
For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research often separates these two directions of information transfer, and focuses primarily on either learning algorithms or communication interfaces. By contrast, in this survey we take an interdisciplinary approach to identify common themes and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction. This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback systems and measures of human-robot interaction. We find that—when learning and communication are developed together—the resulting closed-loop system can lead to improved human teaching, increased human trust, and human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and open questions that could advance how future robots communicate their learning to everyday operators. Finally, we implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm. This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior.more » « less