Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (
Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (
- Award ID(s):
- 1664915
- PAR ID:
- 10082264
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 58
- Issue:
- 4
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 1178-1182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P mup to 0.95) that forms the crystalline sc‐material with aT mof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle. -
Abstract The most reliable single-epoch supermassive black hole mass (
M BH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβ λ 4861 line. Unfortunately, this line is redshifted out of the optical band atz ≈ 1, leavingM BHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civ λ 1549 or Mgii λ 2800, which contain intrinsic challenges when measuring, resulting in uncertainM BHestimates. In this work, we aim at correctingM BHestimates derived from the Civ and Mgii emission lines based on estimates derived from the Hβ emission line. We find that employing the equivalent width of Civ in derivingM BHestimates based on Mgii and Civ provides values that are closest to those obtained from Hβ . We also provide prescriptions to estimateM BHvalues when only Civ , only Mgii , and both Civ and Mgii are measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedM BHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofM BHgiven a much larger sample of quasars at 3.20 ≲z ≲ 3.50, where both Mgii and Hβ can be measured in the same near-infrared spectrum. -
ABSTRACT This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of AB
n (n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,M w/M n ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020 ,58 , 84–90 -
We present JWST/NIRSpec integral field data of the quasar PJ308-21 at
z = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβ line from the broad line region, we obtain an estimate of the black hole massM BH, Hβ ∼ 2.7 × 109M ⊙. This value is within a factor ≲1.5 of the Hα -based black hole mass from the same spectrum (M BH, Hα ∼ 1.93 × 109M ⊙) and is consistent with a previous estimate relying on the MgII λ 2799 line (M BH, MgII ∼ 2.65 × 109M ⊙). All theseM BHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λ Edd, Hβ ∼ 0.67 (λ Edd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [OIII ], FeII , and Hβ lines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [OIII ]λ 5007 emission with a velocity offset Δv [O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM ([OIII ]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv [O III]andFWHM ([OIII ]) likely being more uncertain due to the blending with Hβ and FeII lines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail. -
Abstract Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Ly
α + Nv λ 1240 and/or Civ λ 1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz < 0.5 and 1.5 <z < 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ -based black hole mass (M BH) estimates of these quasars using the strength of the optical Feii emission. We confirm previous findings that WLQs’M BHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisM BHcorrection, we find a significant correlation between Hβ -based Eddington luminosity ratios and a combination of the rest-frame Civ equivalent width and Civ blueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civ parameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties.