Abstract Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Lyα+ Nvλ1240 and/or Civλ1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz< 0.5 and 1.5 <z< 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ-based black hole mass (MBH) estimates of these quasars using the strength of the optical Feiiemission. We confirm previous findings that WLQs’MBHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisMBHcorrection, we find a significant correlation between Hβ-based Eddington luminosity ratios and a combination of the rest-frame Civequivalent width and Civblueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civparameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties.
more »
« less
Gemini Near Infrared Spectrograph–Distant Quasar Survey: Prescriptions for Calibrating UV-based Estimates of Supermassive Black Hole Masses in High-redshift Quasars
Abstract The most reliable single-epoch supermassive black hole mass (MBH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβλ4861 line. Unfortunately, this line is redshifted out of the optical band atz≈ 1, leavingMBHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civλ1549 or Mgiiλ2800, which contain intrinsic challenges when measuring, resulting in uncertainMBHestimates. In this work, we aim at correctingMBHestimates derived from the Civand Mgiiemission lines based on estimates derived from the Hβemission line. We find that employing the equivalent width of Civin derivingMBHestimates based on Mgiiand Civprovides values that are closest to those obtained from Hβ. We also provide prescriptions to estimateMBHvalues when only Civ, only Mgii, and both Civand Mgiiare measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedMBHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofMBHgiven a much larger sample of quasars at 3.20 ≲z≲ 3.50, where both Mgiiand Hβcan be measured in the same near-infrared spectrum.
more »
« less
- PAR ID:
- 10422167
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 96
- Size(s):
- Article No. 96
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quasars atz≳ 1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, Civλ1549, shows blueshifts up to ≈5000 km s−1and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [Oiii]λ5007 feature. We present spectroscopic measurements for 260 sources at 1.55 ≲z≲ 3.50 having −28.0 ≲Mi≲ − 30.0 mag from the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration, which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [Oiii]λ5007 for a subset of 121 sources, which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving Civfull-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350 Å. Applying these corrections can improve the accuracy and the precision in the Civ-based redshift by up to ∼850 km s−1and ∼150 km s−1, respectively, which correspond to ∼8.5 and ∼1.5 Mpc in comoving distance atz= 2.5. Our prescriptions also improve the accuracy of the best available multifeature redshift determination algorithm by ∼100 km s−1, indicating that the spectroscopic properties of the Civemission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys.more » « less
-
We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M⊙. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M⊙) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M⊙). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.more » « less
-
Aims.We have estimated black hole masses (MBH) for 14 gravitationally lensed quasars using Balmer lines; we also provide estimates based on MgII and CIV emission lines for four and two of them, respectively. We compared these estimates to results obtained for other lensed quasars. Methods.We used spectroscopic data from the Large Binocular Telescope (LBT),Magellan, and the Very Large Telescope (VLT) to measure the full width at half maximum of the broad emission lines. Combined with the bolometric luminosity measured from the spectral energy distribution, we estimatedMBHvalues and provide the uncertainties, including uncertainties from microlensing and variability. Results.We obtainedMBHvalues using the single-epoch method from the Hαand/or Hβbroad emission lines for 14 lensed quasars, including the first-ever estimates for QJ0158−4325, HE0512−3329, and WFI2026−4536. The masses are typical of non-lensed quasars of similar luminosities, as are the implied Eddington ratios. We have thus increased the sample of lenses withMBHestimates by 60%.more » « less
-
Abstract We present measurements of black hole masses and Eddington ratios (λEdd) for a sample of 38 bright (M1450< −24.4 mag) quasars at 5.8 ≲z≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civand Mgiiemission lines. The black hole masses (on average,MBH∼ 4.6 × 109M⊙) and accretion rates (0.1 ≲λEdd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 158μm line from the host galaxies and VLT/MUSE investigations of the extended Lyαhalos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT∼ 104K gas, traced by the extended Lyαhalos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them.more » « less
An official website of the United States government
