Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future. 
                        more » 
                        « less   
                    
                            
                            Gross discrepancies between observed and simulated 20th-21st-century precipitation trends in Southeastern South America
                        
                    
    
            Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743738
- PAR ID:
- 10285646
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Interannual precipitation variability profoundly influences society via its effects on agriculture, water resources, infrastructure, and disaster risks. In this study, we use dailyin situprecipitation observations from the global historical climatology network-daily (GHCN-D) to assess the ability of 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models, including the 50-member fifth-generation Canadian Earth System Model single model initial-condition large ensemble (CanESM5_SMILE), to realistically simulate historical interannual precipitation variability trends within 17 regions of the contiguous United States (CONUS). We assess how accurately the CMIP6 simulations align with observational data across annual, summer, and winter periods, focusing on four key hydrometeorological metrics, including interannual precipitation variability, relative interannual precipitation variability (coefficient of variation), annual mean precipitation, and annual wet day frequency. Our findings reveal that CMIP6 ensemble members generally reproduce the spatial patterns of observed trends in annual mean precipitation. In most regions, models agree well with the signs of observed changes in annual mean precipitation, though discrepancies in trend magnitude are evident. Further, observed trends in winter mean precipitation broadly exhibit a spatial pattern similar to that of the observed annual mean. However, analysis of the CanESM5_SMILE shows that trends in precipitation variability may primarily be the result of model-simulated internal variability, suggesting caution in interpreting multi-model single-realization ensemble results. Challenges in accurately simulating interannual precipitation variability underscore the need for ongoing model refinement and validation to enhance climate projections, especially in regions vulnerable to extreme precipitation events.more » « less
- 
            Abstract Austral summer precipitation increased by 27% from 1902 to 2020 over southeastern South America (SESA), one of the largest centennial precipitation trends observed globally. We assess the influence of the South American low‐level jet on the SESA precipitation trend by analyzing low‐level moisture fluxes into SESA in two reanalysis datasets from 1951 to 2020. Increased moisture flux through the jet accounts for 20%–45% of the observed SESA precipitation trend. While results vary among reanalyzes, both point to increased humidity as a fundamental driver of increased moisture flux and SESA precipitation. Increased humidity within the jet is consistent with warming sea surface temperatures driven by anthropogenic forcing, although additional natural climate variations also may have played a role. The jet's velocity also increased, further enhancing precipitation, but without a clear connection to anthropogenic forcing. Our findings indicate the SESA precipitation trend is partly attributable to jet intensification arising from both natural variability and anthropogenic forcing.more » « less
- 
            Abstract. This work assesses a recently produced 21-member climate model large ensemble (LE) based on the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) version 2 (E3SM2). The ensemble spans the historical era (1850 to 2014) and 21st century (2015 to 2100), using the SSP370 pathway, allowing for an evaluation of the model's forced response. A companion 500-year preindustrial control simulation is used to initialize the ensemble and estimate drift. Characteristics of the LE are documented and compared against other recently produced ensembles using the E3SM version 1 (E3SM1) and Community Earth System Model (CESM) versions 1 and 2. Simulation drift is found to be smaller, and model agreement with observations is higher in versions 2 of E3SM and CESM versus their version 1 counterparts. Shortcomings in E3SM2 include a lack of warming from the mid to late 20th century, likely due to excessive cooling influence of anthropogenic sulfate aerosols, an issue also evident in E3SM1. Associated impacts on the water cycle and energy budgets are also identified. Considerable model dependence in the response to both aerosols and greenhouse gases is documented and E3SM2's sensitivity to variable prescribed biomass burning emissions is demonstrated. Various E3SM2 and CESM2 model benchmarks are found to be on par with the highest-performing recent generation of climate models, establishing the E3SM2 LE as an important resource for estimating climate variability and responses, though with various caveats as discussed herein. As an illustration of the usefulness of LEs in estimating the potential influence of internal variability, the observed CERES-era trend in net top-of-atmosphere flux is compared to simulated trends and found to be much larger than the forced response in all LEs, with only a few members exhibiting trends as large as observed, thus motivating further study.more » « less
- 
            Abstract The latitudinal position of the subtropical jet over the Himalayas (Himalayan jet latitude or HJL) controls the region's climate during winter and spring by guiding moisture‐delivering storms. Here we use the Community Earth System Model‐Last Millennium Ensemble to diagnose forced trends in HJL during the past millennium. During 850–1849, there is a weak equatorward trend in winter HJL. In contrast, the spring HJL has a relatively larger poleward trend, and increases in both variance and frequency of poleward/equatorward excursions. We demonstrate changes in orbital precession reduced the thermal gradient between tropical and subtropical Asia, shifting the spring HJL poleward. During 1850–2005, the spring HJL exhibits no trend due to compensating influences from orbital and anthropogenic greenhouse gas forcings. These findings suggest it is essential climate models properly simulate the effects of and potential interactions between orbital forcing and anthropogenic factors to accurately project Himalayan jet variability and associated storm tracks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    