skip to main content


Title: Impact of Platinum Loading and Layer Thickness on Cathode Catalyst Degradation in PEM Fuel Cells

In this work we investigate the effect of platinum loading and layer thickness on cathode catalyst degradation by a comprehensive in situ and STEM-EDS characterization. To decouple the effect of the platinum loading and layer thickness from each other, the experiments were categorized in two sets, each with cathode loadings varying between 0.1 and 0.4 mgPtcm−2: (i) Samples with a constant Pt/C ratio and thus varying layer thickness, and (ii) samples with varying Pt/C ratios, achieved by dilution with bare carbon, to maintain a constant layer thickness at different platinum loadings. Every MEA was subjected to an accelerated stress test, where the cell was operated for 45,000 cycles between 0.6 and 0.95 V. Regardless of the Pt/C ratio, a higher relative loss in electrochemically active surface area was measured for lower Pt loadings. STEM-EDS measurements showed that Pt was mainly lost close to the cathode—membrane interface by the concentration driven Pt2+ion flux into the membrane. The size of this Pt-depletion zone has shown to be independent on the overall Pt loading and layer thickness, hence causing higher relative Pt loss in low thickness electrodes, as the depletion zone accounts for a larger fraction of the catalyst layer.

 
more » « less
Award ID(s):
1919280
NSF-PAR ID:
10477258
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
2
ISSN:
0013-4651
Page Range / eLocation ID:
024506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review provides a comprehensive overview on the development of highly active and durable platinum catalysts with ultra-low Pt loadings for polymer electrolyte membrane fuel cells (PEMFCs) through a combined mathematical modeling and experimental work. First, simulation techniques were applied to evaluate the validity of the Tafel approximation for the calculation of the mass activity (MA) and specific activity (SA). A one-dimensional agglomeration model was developed and solved to understand the effects of exchange current density, porosity, agglomerate size, Nafion®film thickness, and Pt loading on the MA and SA. High porosity (> 60%) and agglomerations at high Pt loadings cause the loss of the Tafel approximation and consequently the decrease in MA and SA. A new structure parameter was introduced to estimate the real porous structure using the fractal theory. The volumetric catalyst density was corrected by the fractal dimension (measured by Hg porosimetry), which gave a good agreement with the experimental values. The loading-dependent Tafel equation was then derived, which contains both the utilization and the non-linear scaling factor. Second, activated carbon composite support (ACCS) with optimized surface area, porosity, pore size, and pore size distribution was developed. The hydrophilic/hydrophobic ratio, structural properties (amorphous/crystalline ratio), and the number of active sites were optimized through metal-catalyzed pyrolysis. Stability of ACCS and Pt/ACCS were evaluated using an accelerated stress test (AST). The results indicated that Pt/ACCS showed no significant loss of MA and power density after 5,000 cycles at 1.0–1.5 V, while the commercial Pt/C catalysts showed drastic losses of MA and power density. Finally, monolayers of compressed Pt (core–shell-type Pt3Co1) catalysts were structured by diffusing Co atoms (previously embedded in ACCS) into Pt. Compressive Pt lattice (Pt*) catalysts were synthesized through an annealing procedure developed at the University of South Carolina (USC). The Pt*/ACCS catalyst showed high initial power density (rated) of 0.174 gPtkW−1and high stability (24 mV loss) at 0.8 A cm−2after 30,000 cycles (0.6–1.0 V). The outstanding performance of Pt*/ACCS is due to the synergistic effect of ACCS and compressive Pt*lattice.

     
    more » « less
  2. Abstract

    In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at −10 mA cm−2), unprecedented mass activities (>800 A g−1at 100 mV overpotential), high turnover frequencies (6.96 H2s−1at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode.

     
    more » « less
  3. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containing acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells. 
    more » « less
  4. Abstract

    Finding a platinum‐free cathode catalyst that effectively models the oxygen reduction reaction (ORR) of a proton‐exchange membrane (PEM) fuel cell cathode better than the current commercial Pt/C catalyst has been a major shortcoming in fuel cell technology. Overall, a promising platinum‐free cathode catalyst must offer great ORR activity, ORR selectivity, and acid stability. Due to their enticing ORR activity and selectivity to the preferred four‐electron ORR pathway, the possible dissolution reactions and oxygen‐intermediate reactions of iron phthalocyanine monolayer supported on a pristine graphene (GFePc) and boron‐doped graphene substrate (BGFePc) have been studied to determine the stability as a function of potential and pH through spin‐polarized density functional theory (DFT) calculations at both infinitesimally low (10−9 m) and 1 mFe2+/Fe3+ionic concentrations. BGFePc offers higher stability in both concentrations than GFePc. In both cases, the oxygen‐intermediates are more stable than the bare catalytic surface due to the metal d‐band center shifting further away from the Fermi level in the valence band state (higher energy of antibonding). Moreover, at an Fe2+ionic concentration, both catalysts would be stable in the potential and pH regions at the operating conditions of rotating disk electrode (RDE) experiments and PEM fuel cells.

     
    more » « less
  5. Abstract

    Oxide supports with well‐defined shapes enable investigations on the effects of surface structure on metal–support interactions and correlations to catalytic activity and selectivity. Here, a modified atomic layer deposition technique was developed to achieve ultra‐low loadings (8–16 ppm) of Pt on shaped ceria nanocrystals. Using octahedra and cubes, which expose exclusively (111) and (100) surfaces, respectively, the effect of CeO2surface facet on Pt‐CeO2interactions under reducing conditions was revealed. Strong electronic interactions result in electron‐deficient Pt species on CeO2(111) after reduction, which increased the stability of the atomically dispersed Pt. This afforded significantly higher NMR signal enhancement in parahydrogen‐induced polarization experiments compared with the electron‐rich platinum on CeO2(100), and a factor of two higher pairwise selectivity (6.1 %) in the hydrogenation of propene than any previously reported monometallic heterogeneous Pt catalyst.

     
    more » « less