skip to main content


Title: Coordinated failure response and recovery in a decentralized microgrid architecture
The challenge of failure management emerges in decentralized architectures due to the distributed nature of the layered control process. Failures in microgrid system may occur at the microgrid level or any of the control layers. A failure detection and response mechanism is required to attain a reliable, fault-tolerant microgrid operation. This paper introduces a Failure Management Unit as an essential function in a microgrid Energy Management System. The proposed unit comprises failure detection mechanisms and a recovery algorithm. The proposed system is applied to a microgrid case study and shows a robust detection and recovery outcome during a system failure. The real-time experimental results were achieved using Hardware-In-the-Loop platform. Coordination between controllers during the recovery period requires low-bandwidth communications, which has no significant overhead on the communication infrastructure.  more » « less
Award ID(s):
1650470
NSF-PAR ID:
10082505
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2017 IEEE Energy Conversion Congress and Exposition (ECCE)
Page Range / eLocation ID:
4821 to 4825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper presents the genetic algorithm (GA) and particle swarm optimization (PSO) based frequency regulation for a wind‐based microgrid (MG) using reactive power balance loop. MG, operating from squirrel cage induction generator (SCIG), is employed for exporting the electrical power from wind turbines, and it needs reactive power which may be imported from the grid. Additional reactive power is also required from the grid for the load, directly coupled with such a distributed generator (DG) plant. However, guidelines issued by electric authorities encourage MGs to arrange their own reactive power because such reactive power procurement is defined as a local area problem for power system studies. Despite the higher cost of compensation, static synchronous compensator (STATCOM) is a fast‐acting FACTs device for attending to these reactive power mismatches. Reactive power control can be achieved by controlling reactive current through the STATCOM. This can be achieved with modification in current controller scheme of STATCOM. STATCOM current controller is designed with reactive power load balance for the proposed microgrid in this paper. Further, gain values of the PI controller, required in the STATCOM model, are selected first with classical methods. In this classical method, iterative procedures which are based on integral square error (ISE), integral absolute error (IAE), and integral square of time error (ISTE) criteria are developed using MATLAB programs. System performances are further investigated with GA and PSO based control techniques and their acceptability over classical methods is diagnosed. Results in terms of converter frequency deviation show how the frequency remains under the operating boundaries as allowed by IEEE standards 1159:1995 and 1250:2011 for integrating renewable‐based microgrid with grid. Real and reactive power management and load current total harmonic distortions verify the STATCOM performance in MG. The results are further validated with the help of recent papers in which frequency regulation is investigated for almost similar power system models. The compendium for this work is as following: (i) modelling of wind generator‐based microgrid using MATLAB simulink library, (ii) designing of STATCOM current controller with PI controller, (iii) gain constants estimation using classical, GA and PSO algorithm through a developed m codes and their interfacing with proposed simulink model, (v) dynamic frequency responses for proposed grid connected microgrid during starting and load perturbations, (vi) verification of system performance with the help of obtained real and reactive power management between STATCOM and grid, and (vii) validation of results with available literature.

     
    more » « less
  2. The addition of geometric reconfigurability in a cable driven parallel robot (CDPR) introduces kinematic redundancies which can be exploited for manipulating structural and mechanical properties of the robot through redundancy resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can also realign its geometric arrangement to overcome the effects of cable failure and recover the original expected trajectory and complete the trajectory tracking task. In this paper we discuss a fault tolerant control (FTC) framework that relies on an Interactive Multiple Model (IMM) adaptive estimation filter for simultaneous fault detection and diagnosis (FDD) and task recovery. The redundancy resolution scheme for the kinematically redundant CDPR takes into account singularity avoidance, manipulability and wrench quality maximization during trajectory tracking. We further introduce a trajectory tracking methodology that enables the automatic task recovery algorithm to consistently return to the point of failure. This is particularly useful for applications where the planned trajectory is of greater importance than the goal positions, such as painting, welding or 3D printing applications. The proposed control framework is validated in simulation on a planar rCDPR with elastic cables and parameter uncertainties to introduce modeled and unmodeled dynamics in the system as it tracks a complete trajectory despite the occurrence of multiple cable failures. As cables fail one by one, the robot topology changes from an over-constrained to a fully constrained and then an under-constrained CDPR. The framework is applied with a constant-velocity kinematic feedforward controller which has the advantage of generating steady-state inputs despite dynamic oscillations during cable failures, as well as a Linear Quadratic Regulator (LQR) feedback controller to locally dampen these oscillations. 
    more » « less
  3. Second-order ripples occur in the voltage and current during any DC–AC power conversion. These conversions occur in the voltage source inverters (VSIs), current source inverters (CSIs), and various single-stage inverters (SSIs) topologies. The second-order ripples lead to oscillating source node currents and DC bus voltages when there is an interconnection between the AC and DC microgrids or when an AC load is connected to the DC bus of the microgrid. Second-order ripples have various detrimental effects on the sources and the battery storage. In the storage battery, they lead to the depletion of electrodes. They also lead to stress in the converter or inverter components. This may lead to the failure of a component and hence affect the reliability of the system. Furthermore, the second-order ripple currents (SRCs) lead to ripple torque in wind turbines and lead to mechanical stress. SRCs cause a rise in the temperature of photovoltaic panels. An increase in the temperature of PV panels leads to a reduction in the power generated. Furthermore, the second-order voltage and current oscillations lead to a varying maximum power point in PV panels. Hence, the maximum power may not be extracted from it. To mitigate SRCs, oversizing of the components is needed. To improve the lifespan of the sources, storage, and converter components, the SRCs must be mitigated or kept within the desired limits. In the literature, different methodologies have been proposed to mitigate and regulate these second-order ripple components. This manuscript presents a comprehensive review of different effects of second-order ripples on different sources and the methodologies adopted to mitigate the ripples. Different active power decoupling methodologies, virtual impedance-based methodologies, pulse width modulation-based signal injection methodologies, and control methods adopted in distributed power generation methods for DC microgrids have been presented. The application of ripple control methods spans from single converters such as SSIs and VSIs to a network of interconnected converters. Furthermore, different challenges in the field of virtual impedance control and ripple mitigation in distributed power generation environments are discussed. This paper brings a review regarding control methodologies to mitigate and regulate second-order ripples in DC–AC conversions and microgrids. 
    more » « less
  4. Reliability enhancement of microgrids is challenged by environmental and operational failures. Centrally controlled microgrids are susceptible to failures at high probability due to a single-point-of-failure, e.g. the central controller. True decentralization of microgrid architecture entails elimination of the central controller, attaining a parallel configuration for the system. In this paper, decentralized microgrid control architecture is proposed as a solution for reliability degradation over the time, and analyzes the reliability aspects of centralized and decentralized control architectures for microgrids. Degree of importance of a single controller in centralized and decentralized architectures is determined and validated by Markov Chain Models (MCM). Results confirm that higher reliability is achieved when true decentralization of control architecture is adopted. Challenges of implementing a true decentralized control architecture are discussed. Hardware-In-the-Loop simulation results for microgrid controller failure scenarios for both architectures are presented and discussed. 
    more » « less
  5. Microgrids voltage regulation is of particular importance during both grid-connected and islanded modes of operation. Especially, during the islanded mode, when the support from the upstream grid is lost, stable voltage regulation is vital for the reliable operation of critical loads. This paper proposes a robust and data-driven control approach for secondary voltage control of AC microgrids in the presence of uncertainties. To this end, unfalsified adaptive control (UAC) is utilized to select the best stabilizing controller from a set of pre-designed controllers with the minimum knowledge required from the microgrid. Two microgrid test systems are simulated in MATLAB to verify the effectiveness of the proposed method under different scenarios like load change and communication link failure. 
    more » « less