skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reliability Analysis of a Decentralized Microgrid Control Architecture
Reliability enhancement of microgrids is challenged by environmental and operational failures. Centrally controlled microgrids are susceptible to failures at high probability due to a single-point-of-failure, e.g. the central controller. True decentralization of microgrid architecture entails elimination of the central controller, attaining a parallel configuration for the system. In this paper, decentralized microgrid control architecture is proposed as a solution for reliability degradation over the time, and analyzes the reliability aspects of centralized and decentralized control architectures for microgrids. Degree of importance of a single controller in centralized and decentralized architectures is determined and validated by Markov Chain Models (MCM). Results confirm that higher reliability is achieved when true decentralization of control architecture is adopted. Challenges of implementing a true decentralized control architecture are discussed. Hardware-In-the-Loop simulation results for microgrid controller failure scenarios for both architectures are presented and discussed.  more » « less
Award ID(s):
1650470
PAR ID:
10082503
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Smart Grid
ISSN:
1949-3053
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The challenge of failure management emerges in decentralized architectures due to the distributed nature of the layered control process. Failures in microgrid system may occur at the microgrid level or any of the control layers. A failure detection and response mechanism is required to attain a reliable, fault-tolerant microgrid operation. This paper introduces a Failure Management Unit as an essential function in a microgrid Energy Management System. The proposed unit comprises failure detection mechanisms and a recovery algorithm. The proposed system is applied to a microgrid case study and shows a robust detection and recovery outcome during a system failure. The real-time experimental results were achieved using Hardware-In-the-Loop platform. Coordination between controllers during the recovery period requires low-bandwidth communications, which has no significant overhead on the communication infrastructure. 
    more » « less
  2. Angelakis, Andreas (Ed.)
    Traditional centralized water systems are facing sustainability challenges due to climate and socioeconomic changes, extreme weather events, and aging infrastructure and their uncertainties. The energy sector has addressed similar challenges using the microgrid approach, which involves decentralized energy sources and their supply, improving system resilience and sustainable energy supply. This study investigated the resilience effects of water microgrids, which feature operational interactions between centralized and local systems for sustainable water supply. A lab-scale water distribution model was tested to demonstrate centralized, decentralized, and microgrid water systems under the disruption scenarios of pump shutdown, pump rate manipulation, and pipe leaks/bursts. The water microgrids integrate centralized and local systems’ operations, while the decentralized system operates independently. Then, functionality-based resilience and its attributes were evaluated for each disruption scenario. The results reveal that, overall, the microgrid configuration, with increased water supply redundancy and flexible operational adjustment based on system conditions, showed higher resilience, robustness, and recovery rate and a lower loss rate across disruption scenarios. The resilience effect of water microgrids was more evident with longer and more severe disruptions. Considering global challenges in water security under climate and socioeconomic changes, the findings suggest insights into a hybrid water system as a strategy to enhance resilience and water use efficiency and provide adaptive operations for sustainable water supply. 
    more » « less
  3. Microgrids voltage regulation is of particular importance during both grid-connected and islanded modes of operation. Especially, during the islanded mode, when the support from the upstream grid is lost, stable voltage regulation is vital for the reliable operation of critical loads. This paper proposes a robust and data-driven control approach for secondary voltage control of AC microgrids in the presence of uncertainties. To this end, unfalsified adaptive control (UAC) is utilized to select the best stabilizing controller from a set of pre-designed controllers with the minimum knowledge required from the microgrid. Two microgrid test systems are simulated in MATLAB to verify the effectiveness of the proposed method under different scenarios like load change and communication link failure. 
    more » « less
  4. Enhancing grid resilience is proposed through the integration of distributed energy resources (DERs) with microgrids. Due to the diverse nature of DERs, there is a need to explore the optimal combined operation of these energy sources within the framework of microgrids. As such, this paper presents the design, implementation and validation of a Model Predictive Control (MPC)-based secondary control scheme to tackle two challenges: optimal islanded operation, and optimal re-synchronization of a microgrid. The MPC optimization algorithm dynamically adjusts input signals, termed manipulated variables, for each DER within the microgrid, including a gas turbine, an aggregate photovoltaic (PV) unit, and an electrical battery energy storage (BESS) unit. To attain optimal islanded operation, the secondary-level controller based on Model Predictive Control (MPC) was configured to uphold microgrid functionality promptly following the islanding event. Subsequently, it assumed the task of power balancing within the microgrid and ensuring the reliability of the overall system. For optimal re-synchronization, the MPC-based controller was set to adjust the manipulated variables to synchronize voltage and angle with the point of common coupling of the system. All stages within the microgrid operation were optimally achieved through one MPC-driven control system, where the controller can effectively guide the system to different goals by updating the MPC’s target reference. More importantly, the results show that the MPC-based control scheme is capable of controlling different DERs simultaneously, mitigating potentially harmful transient rotor torques from the re-synchronization as well as maintaining the microgrid within system performance requirements. 
    more » « less
  5. DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed. 
    more » « less