We study the low-rank phase retrieval problem, where the objective is to recover a sequence of signals (typically images) given the magnitude of linear measurements of those signals. Existing solutions involve recovering a matrix constructed by vectorizing and stacking each image. These solutions model this matrix to be low-rank and leverage the low-rank property to decrease the sample complexity required for accurate recovery. However, when the number of available measurements is more limited, these low-rank matrix models can often fail. We propose an algorithm called Tucker-Structured Phase Retrieval (TSPR) that models the sequence of images as a tensor rather than a matrix that we factorize using the Tucker decomposition. This factorization reduces the number of parameters that need to be estimated, allowing for a more accurate reconstruction. We demonstrate the effectiveness of our approach on real video datasets under several different measurement models.
more »
« less
PhaseLin: Linear phase retrieval
Phase retrieval deals with the recovery of complex-or real-valued signals from magnitude measurements. As shown recently, the method PhaseMax enables phase retrieval via convex optimization and without lifting the problem to a higher dimension. To succeed, PhaseMax requires an initial guess of the solution, which can be calculated via spectral initializers. In this paper, we show that with the availability of an initial guess, phase retrieval can be carried out with an ever simpler, linear procedure. Our algorithm, called PhaseLin, is the linear estimator that minimizes the mean squared error (MSE) when applied to the magnitude measurements. The linear nature of PhaseLin enables an exact and nonasymptotic MSE analysis for arbitrary measurement matrices. We furthermore demonstrate that by iteratively using PhaseLin, one arrives at an efficient phase retrieval algorithm that performs on par with existing convex and nonconvex methods on synthetic and real-world data.
more »
« less
- Award ID(s):
- 1652065
- PAR ID:
- 10082547
- Date Published:
- Journal Name:
- 52nd Annual Conference on Information Sciences and Systems (CISS)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phase retrieval refers to the problem of recovering real- or complex-valued vectors from magnitude measurements. The best-known algorithms for this problem are iterative in nature and rely on so-called spectral initializers that provide accurate initialization vectors. We propose a novel class of estimators suitable for general nonlinear measurement systems, called linear spectral estimators (LSPEs), which can be used to compute accurate initialization vectors for phase retrieval problems. The proposed LSPEs not only provide accurate initialization vectors for noisy phase retrieval systems with structured or random measurement matrices, but also enable the derivation of sharp and nonasymptotic mean-squared error bounds. We demonstrate the efficacy of LSPEs on synthetic and real-world phase retrieval problems, and we show that our estimators significantly outperform existing methods for structured measurement systems that arise in practice.more » « less
-
Abstract Advances in compressive sensing (CS) provided reconstruction algorithms of sparse signals from linear measurements with optimal sample complexity, but natural extensions of this methodology to nonlinear inverse problems have been met with potentially fundamental sample complexity bottlenecks. In particular, tractable algorithms for compressive phase retrieval with sparsity priors have not been able to achieve optimal sample complexity. This has created an open problem in compressive phase retrieval: under generic, phaseless linear measurements, are there tractable reconstruction algorithms that succeed with optimal sample complexity? Meanwhile, progress in machine learning has led to the development of new data‐driven signal priors in the form of generative models, which can outperform sparsity priors with significantly fewer measurements. In this work, we resolve the open problem in compressive phase retrieval and demonstrate that generative priors can lead to a fundamental advance by permitting optimal sample complexity by a tractable algorithm. We additionally provide empirics showing that exploiting generative priors in phase retrieval can significantly outperform sparsity priors. These results provide support for generative priors as a new paradigm for signal recovery in a variety of contexts, both empirically and theoretically. The strengths of this paradigm are that (1) generative priors can represent some classes of natural signals more concisely than sparsity priors, (2) generative priors allow for direct optimization over the natural signal manifold, which is intractable under sparsity priors, and (3) the resulting non‐convex optimization problems with generative priors can admit benign optimization landscapes at optimal sample complexity, perhaps surprisingly, even in cases of nonlinear measurements.more » « less
-
Symmetric quantum signal processing provides a parameterized representation of a real polynomial, which can be translated into an efficient quantum circuit for performing a wide range of computational tasks on quantum computers. For a given polynomial f , the parameters (called phase factors) can be obtained by solving an optimization problem. However, the cost function is non-convex, and has a very complex energy landscape with numerous global and local minima. It is therefore surprising that the solution can be robustly obtained in practice, starting from a fixed initial guess Φ 0 that contains no information of the input polynomial. To investigate this phenomenon, we first explicitly characterize all the global minima of the cost function. We then prove that one particular global minimum (called the maximal solution) belongs to a neighborhood of Φ 0 , on which the cost function is strongly convex under the condition ‖ f ‖ ∞ = O ( d − 1 ) with d = d e g ( f ) . Our result provides a partial explanation of the aforementioned success of optimization algorithms.more » « less
-
The test geometry for a subaperture-scanning measurement technique for convex optical surfaces is discussed. Preliminary simulations of a convex spherical measurement using a prescription retrieval algorithm are demonstrated. © 2019 The Author(s) OCIS codes: (120.3940) Metrology; (120.6650) Surface measurements, figure; (100.5070) Phase retrievalmore » « less
An official website of the United States government

