The role of household level electricity data in improving estimates of the impacts of climate on building electricity use
More Like this
-
The sharing economy has upset the market for housing and transportation services. Homeowners can rent out their property when they are away on vacation, car owners can offer ridesharing services. These sharing economy business models are based on monetizing under-utilized infrastructure. They are enabled by peer-to-peer platforms that match eager sellers with willing buyers. Are there compelling sharing economy opportunities in the electricity sector? What products or services can be shared in tomorrow’s Smart Grid? We begin by exploring sharing economy opportunities in the electricity sector, and discuss regulatory and technical obstacles to these opportunities. We then study the specific problem of a collection of firms sharing their electricity storage. We characterize equilibrium prices for shared storage in a spot market. We formulate storage investment decisions of the firms as a non-convex non-cooperative game. We show that under a mild alignment condition, a Nash equilibrium exists, it is unique, and it supports the social welfare. We discuss technology platforms necessary for the physical exchange of power, and market platforms necessary to trade electricity storage. We close with synthetic examples to illustrate our ideas.more » « less
-
Purple photosynthetic bacteria are emerging as both valuable biotechnological tools and important players in various ecosystems. This extended abstract highlights recent research from the Bose lab at Washington University in St. Louis touching on both of these ideas. Specifically, it discusses the use of "electrotrophic" bacteria as biocatalysts for microbial electrosynthesis, and the prevalence of these microbes in ecosystems like marine wetlands.more » « less
-
Abstract: Load forecasting plays a very crucial role in many aspects of electric power systems including the economic and social benefits. Previously, there have been many studies involving load forecasting using time series approach, including weather-load relationships. In one such approach to predict load, this paper investigates through different structures that aim to relate various daily parameters. These parameters include temperature, humidity and solar radiation that comprises the weather data. Along with natural phenomenon as weather, physical aspects such as traffic flow are also considered. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered. Electricity consumption data is collected from the City of Tallahassee utilities. Traffic count is provided by the Florida Department of Transportation. Moreover, the weather data is obtained from Tallahassee regional Airport weather station. This paper aims to study and establish a cause and effect relationship between the mentioned variables using different causality models and to forecast load based on the external variables. Based on the relationship, a prediction algorithm is applied to check if prediction error decreases when such external factors are considered.more » « less
An official website of the United States government

