skip to main content


Title: Exfoliation and Analysis of Large-area, Air-Sensitive Two-Dimensional Materials
We describe methods for producing and analyzing large, thin flakes of air-sensitive two-dimensional materials. Thin flakes of layered or van der Waals crystals are produced using mechanical exfoliation, in which layers are peeled off a bulk crystal using adhesive tape. This method produces high-quality flakes, but they are often small and can be hard to find, particularly for materials with relatively high cleavage energies such as black phosphorus. By heating the substrate and the tape, two-dimensional material adhesion to the substrate is promoted, and the flake yield can be increased by up to a factor of ten. After exfoliation, it is necessary to image or otherwise analyze these flakes but some two-dimensional materials are sensitive to oxygen or water and will degrade when exposed air. We have designed and tested a hermetic transfer cell to temporarily maintain the inert environment of a glovebox so that air-sensitive flakes can be imaged and analyzed with minimal degradation. The compact design of the transfer cell is such that optical analysis of sensitive materials can be performed outside of a glovebox without specialized equipment or modifications to existing equipment.  more » « less
Award ID(s):
1610126 1851919 1460754
NSF-PAR ID:
10082878
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of visualized experiments
Volume:
143
ISSN:
1940-087X
Page Range / eLocation ID:
e58693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The unique optical properties of transition metal dichalcogenide (TMD) monolayers have attracted significant attention for both photonics applications and fundamental studies of low-dimensional systems. TMD monolayers of high optical quality, however, have been limited to micron-sized flakes produced by low-throughput and labour-intensive processes, whereas large-area films are often affected by surface defects and large inhomogeneity. Here we report a rapid and reliable method to synthesize macroscopic-scale TMD monolayers of uniform, high optical quality. Using 1-dodecanol encapsulation combined with gold-tape-assisted exfoliation, we obtain monolayers with lateral size > 1 mm, exhibiting exciton energy, linewidth, and quantum yield uniform over the whole area and close to those of high-quality micron-sized flakes. We tentatively associate the role of the two molecular encapsulating layers as isolating the TMD from the substrate and passivating the chalcogen vacancies, respectively. We demonstrate the utility of our encapsulated monolayers by scalable integration with an array of photonic crystal cavities, creating polariton arrays with enhanced light-matter coupling strength. This work provides a pathway to achieving high-quality two-dimensional materials over large areas, enabling research and technology development beyond individual micron-sized devices.

     
    more » « less
  2. Abstract One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate–align–release process—without the need of an intermediate carrier substrate—is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials. 
    more » « less
  3. Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of hexagonal boron nitride, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and molybdenum diselenide monolayers was verified by photoluminescence response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution.

     
    more » « less
  4. Abstract

    This paper describes a tape nanolithography method for the rapid and economical manufacturing of flexible, wearable nanophotonic devices. This method involves the soft lithography of a donor substrate with air-void nanopatterns, subsequent deposition of materials onto the substrate surface, followed by direct taping and peeling of the deposited materials by an adhesive tape. Without using any sophisticated techniques, the nanopatterns, which are preformed on the surface of the donor substrate, automatically emerge in the deposited materials. The nanopatterns can then be transferred to the tape surface. By leveraging the works of adhesion at the interfaces of the donor substrate-deposited material-tape assembly, this method not only demonstrates sub-hundred-nanometer resolution in the transferred nanopatterns on an area of multiple square inches but also exhibits high versatility and flexibility for configuring the shapes, dimensions, and material compositions of tape-supported nanopatterns to tune their optical properties. After the tape transfer, the materials that remain at the bottom of the air-void nanopatterns on the donor substrate exhibit shapes complementary to the transferred nanopatterns on the tape surface but maintain the same composition, thus also acting as functional nanophotonic structures. Using tape nanolithography, we demonstrate several tape-supported plasmonic, dielectric, and metallo-dielectric nanostructures, as well as several devices such as refractive index sensors, conformable plasmonic surfaces, and Fabry-Perot cavity resonators. Further, we demonstrate tape nanolithography-assisted manufacturing of a standalone plasmonic nanohole film and its transfer to unconventional substrates such as a cleaved facet and the curved side of an optical fiber.

     
    more » « less
  5. Abstract The design and formation of van der Waals (vdW) heterostructures with different two-dimensional (2D) materials provide an opportunity to create materials with extraordinary physical properties tailored toward specific applications. Mechanical exfoliation of natural vdW materials has been recognized as an effective way for producing high-quality ultrathin vdW heterostructures. Abramovite is one of such naturally occurring vdW materials, where the superlattice is composed of alternating Pb 2 BiS 3 and SnInS 4 2D material lattices. The forced commensuration between the two incommensurate constituent 2D material lattices induces in-plane structural anisotropy in the formed vdW heterostructure of abramovite, even though the individual 2D material lattices are isotropic in nature. Here, we show that ultrathin layers of vdW heterostructures of abramovite can be achieved by mechanical exfoliation of the natural mineral. Furthermore, the structural anisotropy induced highly anisotropic vibrational and optical responses of abramovite thin flakes are demonstrated by angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent third-harmonic generation. Our results not only establish abramovite as a promising natural vdW material with tailored linear and nonlinear optical properties for building future anisotropic integrated photonic devices, but also provide a deeper understanding of the origin of structural, vibrational and optical anisotropy in vdW heterostructures. 
    more » « less