skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: uavEE: A Modular, Power-Aware Emulation Environment for Rapid Prototyping and Testing of UAV
State of the art design and testing of avionics for unmanned aircraft is an iterative process that involves many test flights, interleaved with multiple revisions of the flight management software and hardware. To significantly reduce flight test time and software development costs, we have developed a real-time UAV Emulation Environment (uavEE) using ROS that interfaces with high fidelity simulators to simulate the flight behavior of the aircraft. Our uavEE emulates the avionics hardware by interfacing directly with the embedded hardware used in real flight. The modularity of uavEE allows the integration of countless test scenarios and applications. Furthermore, we present an accurate data driven approach for modeling of propulsion power of fixed-wing UAVs, which is integrated into uavEE. Finally, uavEE and the proposed UAV Power Model have been experimentally validated using a fixed-wing UAV testbed.  more » « less
Award ID(s):
1646383
NSF-PAR ID:
10082990
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) provide a versatile platform well-suited to applications requiring the efficiency of fixed-wing flight with the maneuverability of a multicopter. Prior work has introduced the concept of using solar energy harvesting using photovoltaic cells embedded in the wings of the vehicle to perform self-recharge in the field when landed and at rest. This work demonstrates a further extension of this concept by optimizing the VTOL aircraft for maximum input-to-output power ratio, such that continuous flight is possible for the majority of a typical day with good sunlight. By also adding amphibious design elements, a transoceanic flight cycle is proposed. The candidate aircraft design is shown with estimated and actual behavioral and performance data for hovering and forward flight. Artwork for design elements such as the tiltrotor nacelle design and interchangeable avionics pod are shown. 
    more » « less
  2. Autonomous multicopters often feature federated architectures, which incur relatively high communication costs between separate hardware components. These costs limit the ability to react quickly to new mission objectives. Additionally, federated architectures are not easily upgraded without introducing new hardware that impacts size, weight, power and cost (SWaP-C) constraints. In turn, such constraints restrict the use of redundant hardware to handle faults. In response to these challenges, we propose FlyOS, an Integrated Modular Avionics (IMA) approach to consolidate mixed-criticality flight functions in software on heterogeneous multicore aerial platforms. FlyOS is based on a separation kernel that statically partitions resources among virtualized sandboxed OSes. We present a dual-sandbox prototype configuration, where timing-and safety-critical flight control tasks execute in a real-time OS alongside mission-critical vision-based navigation tasks in a Linux sandbox. Low latency shared memory communication allows flight commands and data to be relayed in real-time between sandboxes. A hypervisor-based fault-tolerance mechanism is also deployed to ensure failover flight control in case of critical function or timing failures. We validate FlyOS’s performance and showcase its benefits when compared against traditional architectures in terms of predictable, extensible and efficient flight control. 
    more » « less
  3. This paper describes the Triton federated-avionics security testbed that supports testing real aircraft electronic systems for security vulnerabilities. Because modern aircraft are complex systems of systems, the Triton testbed allows multiple systems to be instantiated for analysis in order to observe the aggregate behavior of multiple aircraft systems and identify their potential impact on flight safety. We describe two attack scenarios that motivated the design of the Triton testbed: ACARS message spoofing and the software update process for aircraft systems. The testbed allows us to analyze both scenarios to determine whether adversarial interference in their expected operation could cause harm. This paper does not describe any vulnerabilities in real aircraft systems; instead, it describes the design of the Triton testbed and our experiences using it. One of the key features of the Triton testbed is the ability to mix simulated, emulated, and physical electronic systems as necessary for a particular experiment or analysis task. A physical system may interact with a simulated component or a system whose software is running in an emulator. To facilitate rapid reconfigurability, Triton is also entirely software reconfigurable: all wiring between components is virtual and can be changed without physical access to components. A prototype of the Triton testbed is used at two universities to evaluate the security of aircraft systems. 
    more » « less
  4. Abstract

    The majority of bird and bat species are incapable of carrying tags that transmit their position to satellites. Given fundamental power requirements for such communication, burdened mass guidelines and battery technology, this constraint necessitates the continued use of very high frequency (VHF) radio beacons. As such, efforts should be made to mitigate their primary deficiencies: detection range, localization time and localization accuracy.

    The integration of a radiotelemetry system with an unmanned aerial vehicle (UAV) could significantly improve the capacity for data collection from VHF tags. We present a UAV‐integrated radiotelemetry system that relies on open source hardware and software. Localization methods, including signal processing, bearing estimation based on principal component analysis, localization techniques and test results, are discussed.

    Using a low‐power beacon applicable for bats and small birds, testing showed that the improved vantage of the UAV‐radiotelemetry system (UAV‐RT) provided significantly higher received signal power compared to the low‐level flights (maximum range beyond 1.4 km). Flight testing of localization methods showed median bearing errors between 2.3° and 6.8°, with localization errors of between 5% and 14% of the distance to the tag. In a direct comparison to an experienced radiotelemetry user, the UAV‐RT system provided bearing and localization estimates with 53% less error.

    This paper introduces the core functionality and use methods of the UAV‐RT system, while presenting baseline localization performance metrics. An associated website hosts plans for assembly and software installation. The methods of UAV‐RT use for tag detection will be further developed in future works. For both the detection and localization problems, the mobility of a flying asset drastically reduces tracker time requirements. A 7‐min flight would be sufficient to collect five equally spaced bearing estimates over a 1‐km transect. The use of a software‐defined radio on the UAV‐RT system will allow for the simultaneous detection and localization of multiple tags.

     
    more » « less
  5. Continuous trajectory control of fixed-wing unmanned aerial vehicles (UAVs) is complicated when considering hidden dynamics. Due to UAV multi degrees of freedom, tracking methodologies based on conventional control theory, such as Proportional-Integral-Derivative (PID) has limitations in response time and adjustment robustness, while a model based approach that calculates the force and torques based on UAV’s current status is complicated and rigid.We present an actor-critic reinforcement learning framework that controls UAV trajectory through a set of desired waypoints. A deep neural network is constructed to learn the optimal tracking policy and reinforcement learning is developed to optimize the resulting tracking scheme. The experimental results show that our proposed approach can achieve 58.14% less position error, 21.77% less system power consumption and 9:23% faster attainment than the baseline. The actor network consists of only linear operations, hence Field Programmable Gate Arrays (FPGA) based hardware acceleration can easily be designed for energy efficient real-time control. 
    more » « less