- Award ID(s):
- 1301346
- NSF-PAR ID:
- 10083084
- Date Published:
- Journal Name:
- Environmental Science: Processes & Impacts
- Volume:
- 18
- Issue:
- 8
- ISSN:
- 2050-7887
- Page Range / eLocation ID:
- 1078 to 1089
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg −1 U. The presence of coffinite, a U( iv )-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L −1 ) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L −1 ). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1–5 mg kg −1 ) compared to concentrations in wetland sediments with higher organic matter (14–15%) and U concentrations (2–21 mg kg −1 ). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.more » « less
-
Abstract The addition of metals to the oligomeric sodium metasilicate in water results in insoluble metal silicate complexes that form nanoparticles, in which further chemical reactions can be carried out. Copper sulfide, copper tin sulfide, tin sulfide, bismuth sulfide and zinc sulfide doped with manganese nanoparticles were synthesized using this method. The silicate matrix resulted in a narrow particle size distribution and imparted long‐term stability to the nanoparticle suspensions. The reactions were monitored via UV‐Vis‐NIR spectroscopy, and the nanoparticles were characterized by AFM, powder X‐ray diffraction, and Raman spectroscopy. The described method is expected to become a general and versatile approach for aqueous synthesis of multimetallic, doped chalcogenide and other complex nanoparticles without the need of complicated chemical precursors, stabilizing agents, and multiple steps.
-
Wildfires can change ecosystems by altering solutes in streams. We examined major cations in streams draining a chaparral-dominated watershed in the Santa Ynez Mountains (California, USA) following a wildfire that burned 75 km2 from July 8 to October 5, 2017. We identified changes in solute concentrations, and postulated a relation between these changes and ash leached by rainwater following the wildfire. Collectively, K+ leached from ash samples exceeded that of all other major cations combined. After the wildfire, the concentrations of all major cations increased in stream water sampled near the fire perimeter following the first storm of the season: K+ increased 12-fold, Na+ and Ca2+ increased 1.4-fold, and Mg2+ increased 1.6-fold. Our results suggested that the 12-fold increase in K+ in stream water resulted from K+ leached from ash in the fire scar. Both C and N were measured in the ash samples. The low N content of the ash indicated either high volatilization of N relative to C occurred, or burned material contained less N.more » « less
-
Exposure testing was performed on CoCrFeMnNi equiatomic high entropy alloy (HEA) produced via directed energy deposition additive manufacturing in NaNO3-KNO3(60–40 wt%) molten salt at 500 °C for 50 h to evaluate the corrosion performance and oxide film chemistry of the HEA. Potentiodynamic electrochemical corrosion testing, scanning electron microscopy, focused ion beam milling coupled with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy were used to analyze the corrosion behavior and chemistry of the HEA/nitrate molten salt system. The CoCrFeMnNi HEA exhibited a higher passive current density during potentiodynamic polarization testing than steel alloys SS316L and 4130 and the high-Ni alloy 800 H in identical conditions. The oxide film was primarily composed of a (Mn,Co,Ni)Fe2O4spinel with a vertical plate-like morphology at the surface. Cr and Ni were found to be totally depleted at the outer surface of the oxide and dissolved in high concentrations in the molten salt. While Cr was expected to dissolve into the molten salt, the high concentration of dissolved Ni has not been observed with traditional alloys, suggesting that Ni is less stable in the spinel when Mn and Co are present.
-
Catalytic hydrogenation of aromatic compounds is an important industrial process, particularly for the production of many petrochemical and pharmaceutical derivatives. This reaction is mainly catalyzed by noble metals, but rarely by metal oxides. Here, we report the development of monoclinic hydrogen-bearing ruthenium dioxide with a nominal composition of H x RuO 2 that can serve as a standalone catalyst for various hydrogenation reactions. The hydrogen-bearing oxide was synthesized through the water gas shift reaction of CO and H 2 O in the presence of rutile RuO 2 . The structure of H x RuO 2 was determined by synchrotron X-ray diffraction and density functional theory (DFT) studies. Solid-state 1 H NMR and Raman studies suggest that this compound possesses two types of isolated interstitial protons. H x RuO 2 is very active in hydrogenation of various arenes, including liquid organic hydrogen carriers, which are completely converted to the corresponding fully hydrogenated products under relatively mild conditions. In addition, high selectivities (>99%) were observed for the catalytic hydrogenation of functionalized nitroarenes to corresponding anilines. DFT simulations yield a small barrier for concerted proton transfer. The facile proton dynamics may be key in enabling selective hydrogenation reactions at relatively low temperature. Our findings inspire the search for hydrogen-containing metal oxides that could be employed as high-performance materials for catalysts, electrocatalysts, and fuel cells.more » « less