skip to main content

Title: Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC) (invited)
Award ID(s):
1642268 1339505
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Magnetism and Magnetic Materials
Page Range / eLocation ID:
176 to 181
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations, and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bidirectional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bidirectional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new quadrupolar structure in the divergence of MFT. This method is expected to be applicable to spacecraft missions such as MMS, Parker Solar Probe, and Solar Orbiter. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.

    more » « less