skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen
Abstract 1. The release of permafrost‐derived nitrogen (N) has the potential to fertilize tundra vegetation, which in turn may stimulate productivity and thus offset carbon (C) losses from thawing permafrost. Below‐ground plant traits may mediate ecosystem response to permafrost thaw and associated feedbacks to the atmosphere by differentially conferring access to deep, newly thawed permafrost N. Yet, identifying roots and quantifying root N uptake from deep, cold soils in complex plant communities has proved challenging to date. 2. We investigated plant acquisition of experimentally added 15N isotope tracer applied at the permafrost boundary in graminoid‐ and shrub‐dominated tundra at Eight Mile Lake, Alaska, when the thaw front was close to its maximum depth, simulating the release of newly thawed permafrost N. We used molecular tools to verify species and estimate biomass, nitrogen, and isotope pools. 3. Root biomass depth distributions follow an asymptotic relationship with depth, typical of other ecosystems. Few species had roots occurring close to the thaw front. Rubus chamaemorus, a short‐statured non‐mycorrhizal forb, and Carex bigelowii, a sedge, consistently had the deepest roots. Twenty‐four hours after isotope addition, we observed that deep‐rooted, non‐mycorrhizal species had the highest 15N enrichment values in their fine root tissue indicating that they access deep N late in the growing season when the thaw front is deepest. Deep‐rooted plants are therefore able to immediately take up newly thawed permafrost‐derived N. During the following growing season, herbaceous, non‐mycorrhizal plants allocated tracer above‐ground before woody, mycorrhizal plants. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs, by contrast, did not have immediate access to the deep N tracer and assimilated it into new foliar tissue gradually over the following growing season. 4. Synthesis. Graminoids and forbs that have immediate access to deep N represent a modest C sink compared to C emissions from thawing permafrost. However, the effects of deep N fertilization on shrubs over longer time‐scales may stimulate productivity and account for a more considerable N and C sink, thus constraining the permafrost C‐climate feedback.  more » « less
Award ID(s):
1636476
PAR ID:
10083293
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Ecology
ISSN:
0022-0477
Page Range / eLocation ID:
1-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. - Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. - We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. - Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. - Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling. 
    more » « less
  2. null (Ed.)
    Aims Climate warming in northern ecosystems is triggering widespread permafrost thaw, during which deep soil nutrients, such as nitrogen, could become available for biological uptake. Permafrost thaw shift frozen organic matter to a saturated state, which could impede nutrient uptake. We assessed whether soil nitrogen can be accessed by the deep roots of vascular plants in thermokarst bogs, potentially allowing for increases in primary productivity. Methods We conducted an ammonium uptake experiment on Carex aquatilis Wahlenb. roots excavated from thermokarst bogs in interior Alaska. Ammonium uptake capacity was compared between deep and shallow roots. We also quantified differences in root ammonium uptake capacity and plant size characteristics (plant aboveground and belowground biomass, maximum shoot height, and maximum root length) between the actively-thawing margin and the centre of each thermokarst bog as a proxy for time-following-thaw. Results Deep roots had greater ammonium uptake capacity than shallow roots, while rooting depth, but not belowground biomass, was positively correlated with aboveground biomass. Although there were no differences in aboveground biomass between the margin and centre, our findings suggest that plants can benefit from investing in the acquisition of resources near the vertical thaw front. Conclusions Our results suggest that deep roots of C. aquatilis can contribute to plant nitrogen uptake and are therefore able to tolerate anoxic conditions in saturated thermokarst bogs. This work furthers our understanding of how subarctic and wetland plants respond to warming and how enhanced plant biomass production might help offset ecosystem carbon release with future permafrost thaw. 
    more » « less
  3. The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems. However, we do not yet know where and when this occurs and whether these phenological asynchronies are driven by variation in local vegetation communities or by spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and root growth and senescence across microclimates and plant communities at five sites across the tundra biome. We observed asynchronous growth between above-ground and below-ground plant tissue, with the below-ground season extending up to 74% beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity and growth rates of roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as roots remain active in unfrozen soils for longer as the climate warms. Taken together, increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrubs and graminoids, can act together to alter below-ground productivity and carbon cycling in the tundra biome. 
    more » « less
  4. ABSTRACT The below‐ground growing season often extends beyond the above‐ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above‐ and below‐ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above‐ and below‐ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine‐root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above‐ and below‐ground plant tissue, with the below‐ground season extending up to 74% (~56 days) beyond the onset of above‐ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below‐ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below‐ground productivity and altered carbon cycling in the tundra biome. 
    more » « less
  5. In this larger study, we are asking the question: Is old carbon that comprises the bulk of the soil organic matter pool released in response to thawing of permafrost? We are answering this question by using a combination of field and laboratory experiments to measure radiocarbon isotope ratios in soil organic matter, soil respiration, and dissolved organic carbon, in tundra ecosystems. The objective of these proposed measurements is to develop a mechanistic understanding of the SOM sources contributing to C losses following permafrost thawing. We are making these measurements at an established tundra field site near Healy, Alaska in the foothills of the Alaska Range. Field measurements center on a natural experiment where permafrost has been observed to warm and thaw over the past several decades. This area represents a gradient of sites each with a different degree of change due to permafrost thawing. As such, this area is unique for addressing questions at the time and spatial scales relevant for change in arctic ecosystems. 
    more » « less