skip to main content


Title: Vapor-Phase Growth of CsPbBr 3 Microstructures for Highly Efficient Pure Green Light Emission
All-inorganic lead halide perovskites have been extensively studied in the past several years due to their superior stability against moisture, oxygen, light, and heat compared with their organic–inorganic counterparts. CsPbBr3 with suitable band gap and ultrahigh photoluminescence quantum yield is a promising candidate for pure green emitter in the backlighting display to fill the so-called “green gap.” Here, vapor-phase growth of CsPbBr3 microspheres is reported for highly efficient pure green light emission. The as-synthesized microspheres exhibit a stronger photoluminescence (PL) intensity with a photoluminescence quantum yield of 75% resulting from the lower energy of longitudinal optical phonons revealed by temperature dependent PL studies. Importantly, with the diameter increasing from 2 to 50 μm the PL peak positions of the microspheres can be readily tuned from 527 to 539 nm, well filling the so-called “green gap.” The red-shift with increasing diameter can be ascribed to the reabsorption process during the photon propagation inside the microspheres. The studies provide a route to improve the photoluminescence quantum yield in all-inorganic lead halide perovskites, but also suggest an alternative approach to achieve the pure green emission for the backlighting display.  more » « less
Award ID(s):
1301346
NSF-PAR ID:
10083359
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Optical Materials
ISSN:
2195-1071
Page Range / eLocation ID:
1801336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. All-inorganic halide perovskite nanocrystals (NCs) offer impressive optoelectronic properties for light harvesting, energy conversion, and photoredox applications, with two-dimensional (2D) perovskite NCs further increasing these prospects due to their improved photoluminescence (PL) tuneability, impressive color purity, high in-plane charge transport, and large lateral dimensions which is advantageous for device integration. However, the synthesis of 2D perovskites is still challenging, especially toward large-scale applications. In this study, through the control of surface ligand composition and concentration of a mixture of short (octanoic acid and octylamine, 8-carbon chain) and long (oleic acid and oleylamine, 18-carbon chain) ligands, we have developed an extremely facile ligand-mediated synthesis of 2D CsPbX 3 (X = Cl, Br, or mixture thereof) nanoplatelets (NPLs) at room temperature in an open vessel. In addition, the developed method is highly versatile and can be applied to synthesize Mn-doped CsPbX 3 NPLs, showing a systematic increase in the total PL quantum yield (QY) and the Mn-dopant emission around 600 nm with increasing Mn and Cl concentrations. The reaction occurs in toluene by the introduction of CsX, PbX 2 , and MnX 2 precursors under ambient conditions, which requires no harsh acids, avoids excessive lead waste, little thermal energy input, and is potentially scalable toward industrial applications. 
    more » « less
  3. Abstract

    Copper(I) halides are emerging as attractive alternatives to lead halide perovskites for optical and electronic applications. However, blue‐emitting all‐inorganic copper(I) halides suffer from poor stability and lack of tunability of their photoluminescence (PL) properties. Here, the preparation of silver(I) halides A2AgX3(A = Rb, Cs; X = Cl, Br, I) through solid‐state synthesis is reported. In contrast to the Cu(I) analogs, A2AgX3are broad‐band emitters sensitive to A and X site substitutions. First‐principle calculations show that defect‐bound excitons are responsible for the observed main PL peaks in Rb2AgX3and that self‐trapped excitons (STEs) contribute to a minor PL peak in Rb2AgBr3. This is in sharp contrast to Rb2CuX3, in which the PL is dominated by the emission by STEs. Moreover, the replacement of Cu(I) with Ag(I) in A2AgX3significantly improves photostability and stability in the air under ambient conditions, which enables their consideration for practical applications. Thus, luminescent inks based on A2AgX3are prepared and successfully used in anti‐counterfeiting applications. The excellent light emission properties, significantly improved stability, simple preparation method, and tunable light emission properties demonstrated by A2AgX3suggest that silver(I) halides may be attractive alternatives to toxic lead halide perovskites and unstable copper(I) halides for optical applications.

     
    more » « less
  4. Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials. However, the origin of the photoluminescence (PL) and, in particular, the different photophysical properties in hybrid organic–inorganic and all inorganic halides are still poorly understood. In this work, first-principles calculations were performed to study the excitons and intrinsic defects in 0D hybrid organic–inorganic halides (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I), which exhibit a high photoluminescence quantum efficiency (PLQE) at room temperature (RT), and also in the 0D inorganic halide Cs 4 PbBr 6 , which suffers from strong thermal quenching when T > 100 K. We show that the excitons in all three 0D halides are strongly bound and cannot be detrapped or dissociated at RT, which leads to immobile excitons in (C 4 N 2 H 14 X) 4 SnX 6 . However, the excitons in Cs 4 PbBr 6 can still migrate by tunneling, enabled by the resonant transfer of excitation energy (Dexter energy transfer). The exciton migration in Cs 4 PbBr 6 leads to a higher probability of trapping and nonradiative recombination at the intrinsic defects. We show that a large Stokes shift and the negligible electronic coupling between luminescent centers are important for suppressing exciton migration; thereby, enhancing the photoluminescence quantum efficiency. Our results also suggest that the frequently observed bright green emission in Cs 4 PbBr 6 is not due to the exciton or defect-induced emission in Cs 4 PbBr 6 but rather the result of exciton emission from CsPbBr 3 inclusions trapped in Cs 4 PbBr 6 . 
    more » « less
  5. Blue emitting Sn-based lead-free halide perovskite nanocrystals (NCs) are considered to be a promising material in lighting and displays. However, industrialised fabrication of blue-emitting NCs still remains a significant challenge due to the use of toxic solvents and optical instability, not mentioning in large-scale synthesis. In this work, a green-route synthesis of blue-emitting lead-free halide perovskite Cs 2 SnCl 6 powders is developed, in which deionized water with a small amount of inorganic acid is used as the solvent and the synthesis of the Cs 2 SnCl 6 powders is achieved on a microfluidic platform. Using the Cs 2 SnCl 6 powders, we prepare Cs 2 SnCl 6 NCs via an ultrasonication process. Changing the volume ratio of the ligands (oleic acid to oleylamine) can alter the photoluminescence (PL) characteristics of the prepared NCs, including the PL-peak wavelength, PL-peak intensity and quantum yield. The highest photoluminescence quantum yield (PLQY) of 13.4% is achieved by the Cs 2 SnCl 6 NCs prepared with the volume ratio of oleic acid to oleylamine of 40 μL to 10 μL. A long-term PL stability test demonstrates that the as-synthesized Cs 2 SnCl 6 NCs can retain a stable PLQY over a period of 60 days. This work opens up a new path for a large-scale green-route synthesis of blue-emitting Sn-based lead-free NCs, such as Cs 2 SnX 6 (Cl, Br and I), towards their applications in optoelectronics. 
    more » « less