skip to main content


Title: A Rejoinder on the Value of Archaeomagnetic Dating: Integrative Methodology Is the Key to Addressing Levantine Iron Age Chronology
Archaeomagnetic dating is a firmly established dating technique applicable to a wide variety of heat-treated anthropological materials and is advantageous for sites that lack materials suitable for radiocarbon dating. To correct recent misinterpretations of the method, we provide examples of how archaeomagnetic dating curves are calibrated and show how, in some instances, the technique can provide superior results. We emphasize that no single dating technique is capable of resolving the challenging chronology controversies in the Levant, and instead argue that multiple dating methods must be integrated in order to achieve the highest possible temporal resolution.  more » « less
Award ID(s):
1642268 1339505
NSF-PAR ID:
10083576
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Near Eastern archaeology
Volume:
8
Issue:
2
ISSN:
2325-5404
Page Range / eLocation ID:
141-144,
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Beginning in 1964, an academic lineage of Robert DuBois and his students, Daniel Wolfman and Jeffrey Eighmy, developed dedicated United States‐based archaeomagnetic research programs. Collectively, they analyzed over 5,377 archaeomagnetic sites, primarily from North America, dated to less than 2,000 years old. Yet despite their decades of effort, few journal publications resulted. Most of their published results are embedded in archeological reports, often without technical data, which limits the data's accessibility. Furthermore, when published, the results are generally averaged at the site level using statistical conventions different from today's standards, limiting the data's comparability and (re)usability. In 2015, we undertook a salvage archival study to digitize the surviving data and metadata from the scientists' individual estates and emeritus collections. We digitized measurement data from more than 51,000 specimens, reinterpreted them using modern conventions, and uploaded them to the FAIR‐adhering magnetic data repository,earthref.org/MagIC. The reinterpreted site‐level results from the three laboratories are mutually consistent, permitting the individual data sets to be combined and analyzed as single regional entities. Through incorporation into the MagIC repository, these legacy data are now accessible for incorporation into archaeomagnetic and global magnetic field modeling efforts, critical to understanding Earth's magnetic field variation through time. In the Four Corners region of the United States Southwest, this digitized archive advances the development of a new regional paleosecular variation curve used in archaeomagnetic dating. This project highlights both the value and complexities of managing legacy data; the many lessons learned to set a precedent for future paleomagnetic data recovery efforts.

     
    more » « less
  2. Constraining secular variation of the Earth’s magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth’s magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.

     
    more » « less
  3. null (Ed.)
    SUMMARY An archaeomagnetic, rock magnetic and magnetic fabric study has been carried out on seven anthropogenic ash horizons in the Middle Palaeolithic sedimentary level XXIV at the rock shelter of Crvena Stijena (‘Red Rock’), Montenegro. The study has multiple goals, including the identification of iron bearing minerals formed during combustion, assessment of the suitability of these combustion features for recording the Earth´s magnetic field direction, revelation of the magnetic fabric and its significance in the characterization of cave (rock shelter) burnt facies, and identification of post-burning alteration processes. Magnetite has been identified as the main ferromagnetic component of the ash. The ash layers exhibit a high thermomagnetic reversibility in contrast to the irreversible behaviour of their subjacent burnt black layers which is related to the different temperatures attained. Seven mean archaeomagnetic directions were obtained with acceptable statistical values indicating that these features recorded the field direction at the time of burning. However, some of them are out of the expected range of secular variation for mid-latitude regions suggesting post-burning alterations. The magnetic fabric of the ash was characterized by anisotropy of low field magnetic susceptibility measurements. Statistical analysis (box and whisker plot) of the basic anisotropy parameters, such as foliation, lineation, degree of anisotropy and the shape parameter, along with the alignment of the principal susceptibilities on stereoplots, revealed variation among the ash units. The diverse, oblate to prolate, lineated or strongly foliated, quasi-horizontally and vertically oriented fabrics of the units may indicate different slope processes, such as orientation by gravity, solifluction, run-off water, quasi-vertical migration of groundwater and post-burning/post-depositional alteration of the fabric by rockfall impact. In sum, the magnetic characterization of the ash layers has shown the occurrence of different post-burning alteration processes previously not identified at the site. Alteration processes in prehistoric combustion features are often identified from macroscopic observations but our study demonstrates that multiple processes can affect them and are usually unnoted because they take place on a microscopic scale. Their identification is critical for a correct chronological and cultural interpretation of a site (e.g. collection of samples for dating, stratigraphic displacement of remains), especially if significant alterations are involved. Magnetic methods are therefore a powerful but underutilized tool in palaeolithic research for the identification and evaluation of taphonomic processes affecting prehistoric fires. 
    more » « less
  4. Abstract Constraining radiocarbon ( 14 C) reservoir age offsets is critical to deriving accurate calendar-age chronologies from 14 C dating of materials which did not draw carbon directly from the atmosphere. The application of 14 C dating to such materials is severely limited in hydrologically sensitive environments like the Black Sea because of the difficulty to quantify reservoir age offsets, which can vary quickly and significantly through time, due to the dynamics of the biogeochemical cycling of carbon. Here we reconstruct 14 C reservoir age offsets (R shell-atm ) of Holocene bivalve shells from the coastal Black Sea relatively to their contemporaneous atmosphere. We show that the 14 C reservoir age offset and the stable carbon isotope composition of bivalve shells are linearly correlated in this region. From a biogeochemical standpoint, this suggests that inorganic stable carbon isotope and 14 C compositions of Black Sea coastal waters are controlled by the balance between autochthonous primary productivity and heterotrophic respiration of allochthonous pre-aged terrestrial organic matter supplied by rivers. This provided an important implication for Black Sea geochronology as the reservoir age offset of 14 C-dated bivalve shell can be inferred from its stable carbon isotope composition. Our results provide a fundamental and inexpensive geochemical tool which will considerably improve the accuracy of Holocene calendar age chronologies in the Black Sea. 
    more » « less
  5. Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required. 
    more » « less