skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An archaeomagnetic study of the Ishtar Gate, Babylon
Data from the marriage of paleomagnetism and archaeology (archaeomagnetism) are the backbone of attempts to create geomagnetic field models for ancient times. Paleointensity experimental design has been the focus of intensive efforts and the requirements and shortcomings are increasingly well understood. Some archaeological materials have excellent age control from inscriptions, which can be tied to a given decade or even a specific year in some cases. In this study, we analyzed fired mud bricks used for the construction of the Ishtar Gate, the entrance complex to the ancient city of Babylon in Southern Mesopotamia. We were able to extract reliable intensity data from all three phases of the gate, the earliest of which includes bricks inscribed with the name of King Nebuchadnezzar II (605 to 562 BCE). These results (1) add high quality intensity data to a region relatively unexplored so far (Southern Mesopotamia), (2) contribute to a better understanding of paleosecular variation in this region, and the development of an archaeomagnetic dating reference for one of the key regions in the history of human civilizations; (3) demonstrate the potential of inscribed bricks (glazed and unglazed), a common material in ancient Mesopotamia, to archaeomagnetic studies; and (4) suggest that the gate complex was constructed some time after the Babylonian conquest of Jerusalem, and that there were no substantial chronological gaps in the construction of each consecutive phase. The best fit of our data (averaging 136±2.1 ZAm2) with those of the reference curve (the Levantine Archaeomagnetic Curve) is 569 BCE.  more » « less
Award ID(s):
2126298
PAR ID:
10558614
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Uziel, Joe
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0293014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: Exploring geomagnetic variations in ancient mesopotamia: Archaeomagnetic study of inscribed bricks from the 3rd–1st millennia BCE 
    more » « less
  2. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: An archaeomagnetic study of the Ishtar Gate, Babylon 
    more » « less
  3. The Lake Titicaca basin was one of the major centers for cultural development in the ancient world. This lacustrine environment is unique in the high, dry Andean altiplano , and its aquatic and terrestrial resources are thought to have contributed to the florescence of complex societies in this region. Nevertheless, it remains unclear to what extent local aquatic resources, particularly fish, and the introduced crop, maize, which can be grown in regions along the lakeshores, contributed to facilitating sustained food production and population growth, which underpinned increasing social political complexity starting in the Formative Period (1400 BCE to 500 CE) and culminating with the Tiwanaku state (500 to 1100 CE). Here, we present direct dietary evidence from stable isotope analysis of human skeletal remains spanning over two millennia, together with faunal and floral reference materials, to reconstruct foodways and ecological interactions in southern Lake Titicaca over time. Bulk stable isotope analysis, coupled with compound-specific amino acid stable isotope analysis, allows better discrimination between resources consumed across aquatic and terrestrial environments. Together, this evidence demonstrates that human diets predominantly relied on C 3 plants, particularly quinoa and tubers, along with terrestrial animals, notably domestic camelids. Surprisingly, fish were not a significant source of animal protein, but a slight increase in C 4 plant consumption verifies the increasing importance of maize in the Middle Horizon. These results underscore the primary role of local terrestrial food resources in securing a nutritious diet that allowed for sustained population growth, even in the face of documented climate and political change across these periods. 
    more » « less
  4. Abstract Beginning in 1964, an academic lineage of Robert DuBois and his students, Daniel Wolfman and Jeffrey Eighmy, developed dedicated United States‐based archaeomagnetic research programs. Collectively, they analyzed over 5,377 archaeomagnetic sites, primarily from North America, dated to less than 2,000 years old. Yet despite their decades of effort, few journal publications resulted. Most of their published results are embedded in archeological reports, often without technical data, which limits the data's accessibility. Furthermore, when published, the results are generally averaged at the site level using statistical conventions different from today's standards, limiting the data's comparability and (re)usability. In 2015, we undertook a salvage archival study to digitize the surviving data and metadata from the scientists' individual estates and emeritus collections. We digitized measurement data from more than 51,000 specimens, reinterpreted them using modern conventions, and uploaded them to the FAIR‐adhering magnetic data repository,earthref.org/MagIC. The reinterpreted site‐level results from the three laboratories are mutually consistent, permitting the individual data sets to be combined and analyzed as single regional entities. Through incorporation into the MagIC repository, these legacy data are now accessible for incorporation into archaeomagnetic and global magnetic field modeling efforts, critical to understanding Earth's magnetic field variation through time. In the Four Corners region of the United States Southwest, this digitized archive advances the development of a new regional paleosecular variation curve used in archaeomagnetic dating. This project highlights both the value and complexities of managing legacy data; the many lessons learned to set a precedent for future paleomagnetic data recovery efforts. 
    more » « less
  5. We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2(high) and A1(LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current. 
    more » « less