Plant networks of oscillating genes coordinate internal processes with external cues, contributing to increased fitness. We hypothesized that the response to submergence stress may dynamically change during different times of the day. In this work, we determined the transcriptome (RNA sequencing) of the model monocotyledonous plant, Brachypodium distachyon, during a day of submergence stress, low light, and normal growth. Two ecotypes of differential tolerance, Bd21 (sensitive) and Bd21-3 (tolerant), were included. We submerged 15-day-old plants under a long-day diurnal cycle (16 h light/8 h dark) and collected samples after 8 h of submergence at ZT0 (dawn), ZT8 (midday), ZT16 (dusk), ZT20 (midnight), and ZT24 (dawn). Rhythmic processes were enriched both with up- and down-regulated genes, and clustering highlighted that the morning and daytime oscillator components (PRRs) show peak expression in the night, and a decrease in the amplitude of the clock genes (GI, LHY, RVE) was observed. Outputs included photosynthesis-related genes losing their known rhythmic expression. Up-regulated genes included oscillating suppressors of growth, hormone-related genes with new late zeniths (e.g., JAZ1, ZEP), and mitochondrial and carbohydrate signaling genes with shifted zeniths. The results highlighted genes up-regulated in the tolerant ecotype such as METALLOTHONEIN3 and ATPase INHIBITOR FACTOR. Finally, we show by luciferase assays that Arabidopsis thaliana clock genes are also altered by submergence changing their amplitude and phase. This study can guide the research of chronocultural strategies and diurnal-associated tolerance mechanisms.
more »
« less
Multiomics resolution of molecular events during a day in the life of Chlamydomonas
The unicellular green algaChlamydomonas reinhardtiidisplays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light–dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations thatChlamydomonasexhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genesPSBS,LHCSR1, andLHCSR3show an acute response to lights-on at dawn under abrupt dark-to-light transitions, whileLHCSR3genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.
more »
« less
- PAR ID:
- 10083590
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 6
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 2374-2383
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day–night cycle, but the underlying mechanisms remain elusive. InPetunia hybridacv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators.Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day–night oscillation of the biosynthetic gene network of specialized metabolites.By performing time‐course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day–night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes.Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.more » « less
-
SUMMARY As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique toArabidopsis thaliana, namedQUA‐QUINE STARCH(QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME‐INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppressQQSduring the period at dawn, thus preventing overconsumption of starch reserves.QQSexpression is significantly de‐repressed inpif4andpifQ, while repressed by overexpression ofPIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators ofQQSexpression. In addition, we show that the evening complex, including ELF3 is required for active expression ofQQS, thus playing a positive role in starch catabolism during night‐time. Furthermore,QQSis epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression ofQQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.more » « less
-
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.more » « less
-
Abstract Artificial light at night (ALAN) is an increasingly important form of environmental disturbance as it alters Light:Dark cycles that regulate daily and seasonal changes in physiology and phenology. The Northern house mosquito (Culex pipiens) and the tiger mosquito (Aedes albopictus) enter an overwintering dormancy known as diapause that is cued by short days. These two species differ in diapause strategy:Cx. pipiensdiapause as adult females whileAe. albopictusenter a maternally-programmed, egg diapause. Previous studies found that ALAN inhibits diapause in both species, but the mechanism is unknown. As the circadian clock is implicated in the regulation of diapause in many insects, we examined whether exposure to ALAN altered the daily expression of core circadian cloc genes (cycle,Clock,period,timeless,cryptochrome 1,cryptochrome 2, andPar domain protein 1) in these two species when reared under short-day, diapause-inducing conditions. We found that exposure to ALAN altered the abundance of several clock genes in adult females of both species, but that clock gene rhythmicity was maintained for most genes. ALAN also had little effect on clock gene abundance in mature oocytes that were dissected from femaleAe. albopictusthat were reared under short day conditions. Our findings indicate that ALAN may inhibit diapause initiation through the circadian clock in two medically-important mosquitoes.more » « less
An official website of the United States government
