skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency
The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.  more » « less
Award ID(s):
1707356
PAR ID:
10083698
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
7
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gupton, Stephanie (Ed.)
    Following exocytosis at active zones, synaptic vesicle membranes and membrane-bound proteins must be recycled. The endocytic machinery that drives this recycling accumulates in the periactive zone (PAZ), a region of the synapse adjacent to active zones, but the organization of this machinery within the PAZ, and how PAZ composition relates to active zone release properties, remains unknown. The PAZ is also enriched for cell adhesion proteins, but their function at these sites is poorly understood. Here, using Airyscan and stimulated emission depletion imaging of Drosophila synapses, we develop a quantitative framework describing the organization and ultrastructure of the PAZ. Different endocytic proteins localize to distinct regions of the PAZ, suggesting that subdomains are specialized for distinct biochemical activities, stages of membrane remodeling, or synaptic functions. We find that the accumulation and distribution of endocytic but not adhesion PAZ proteins correlate with the abundance of the scaffolding protein Bruchpilot at active zones—a structural correlate of release probability. These data suggest that endocytic and exocytic activities are spatially correlated. Taken together, our results identify novel relationships between the exocytic and endocytic apparatus at the synapse and provide a new conceptual framework to quantify synaptic architecture. 
    more » « less
  2. null (Ed.)
    Abstract Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD. 
    more » « less
  3. AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca 2+ permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, post hoc morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching. 
    more » « less
  4. It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of theXenopustadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10–21 days postfertilization)Xenopustadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2receptor–dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity. 
    more » « less
  5. Synapses of retinal rod photoreceptors involve deep invaginations occupied by second-order rod bipolar cell (RBP) and horizontal cell (HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. To study the impact of this architecture on glutamate diffusion and receptor activity, we reconstructed four rod terminals and their postsynaptic dendrites from serial electron micrographs of the mouse retina. We incorporated these structures into anatomically realistic Monte Carlo simulations of neurotransmitter diffusion and receptor activation. By comparing passive diffusion of glutamate in realistic structures with geometrically simplified models, we found that glutamate exits anatomically realistic synapses 10-fold more slowly than previously predicted. Constraining simulations with physiological data, we modeled activity of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RBP dendrites. Simulations suggested that ∼3,000 EAAT5 populate rod membranes. While uptake by surrounding glial Müller cells retrieves most glutamate released by rods, binding and uptake by EAAT5 influence RBP kinetics. Glutamate persistence allows mGluR6 on RBP dendrites to integrate the stream of vesicles released by rods in darkness. Glutamate’s tortuous diffusional path confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. Temporal integration supports slower sustained release rates, but additional quantal variability can impede postsynaptic detection of changes in release produced by rod light responses. These results show an example of the profound impact that synaptic architecture can have on postsynaptic responses. 
    more » « less