skip to main content


Title: ITCZ Width Controls on Hadley Cell Extent and Eddy-Driven Jet Position and Their Response to Warming

The impact of global warming–induced intertropical convergence zone (ITCZ) narrowing onto the higher-latitude circulation is examined in the GFDL Atmospheric Model, version 2.1 (AM2.1), run over zonally symmetric aquaplanet boundary conditions. A striking reconfiguration of the deep tropical precipitation from double-peaked, off-equatorial ascent to a single peak at the equator occurs under a globally uniform +4 K sea surface temperature (SST) perturbation. This response is found to be highly sensitive to the SST profile used to force the model. By making small (≤1 K) perturbations to the surface temperature in the deep tropics, varying control simulation precipitation patterns with both single and double ITCZs are generated. Across the climatologies, narrower regions of ascent correspond to more equatorward Hadley cell edges and eddy-driven jets. Under the global warming perturbation, the experiments in which there is narrowing of the ITCZ show significantly less expansion of the Hadley cell and somewhat less poleward shift of the eddy-driven jet than those without ITCZ narrowing. With a narrower ITCZ, the ascending air has larger zonal momentum, causing more westerly upper-tropospheric subtropical wind. In turn, this implies 1) the subtropical jet will become baroclinically unstable at a lower latitude and 2) the critical (zero wind) line will shift equatorward, allowing midlatitude eddies to propagate farther equatorward. Both of these mechanisms modify the Hadley cell edge position, and the latter affects the jet position.

 
more » « less
Award ID(s):
1665247
NSF-PAR ID:
10083858
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
4
ISSN:
0894-8755
Page Range / eLocation ID:
p. 1151-1166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  2. null (Ed.)
    Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases. 
    more » « less
  3. Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing. 
    more » « less
  4. Abstract

    We extend the locking technique to separate the poleward shift of the atmospheric circulation in response to quadrupled CO2into contributions from (1) CO2increase, (2) cloud radiative effects, and (3) wind and surface humidity‐induced surface heat exchange. In aquaplanet simulations, wind and surface humidity‐induced surface heat exchange accounts for 30–60% of the Hadley cell edge and midlatitude eddy‐driven jet shift. The increase of surface specific humidity dominates and mostly follows global mean warming. Consistent with previous work the remaining shift is attributed to cloud radiative effects. Across CMIP5 models the intermodel variance in the austral winter circulation shift in response to quadrupled CO2is significantly correlated with the response of the subtropical‐subpolar difference of surface heat exchange. The results highlight the dominant role of surface heat exchange for future circulation changes.

     
    more » « less
  5. Abstract

    This article promotes a measure to validate the hydrostatic approximation via scaling the nontraditional Coriolis term (NCT) in the zonal momentum equation. To demonstrate the scaling, this study simulates large‐scale flow forced by a prescribed heat source, mimicking the intertropical convergence zone (ITCZ) using a linearized forced‐dissipative model. The model solves two similar equations, between which the only difference is the inclusion of NCTs. The equations are derived using the following approximations: anelastic, equatorial beta‐plane, linearized, zonally symmetric, steady, and a constant dissipation coefficient. The large‐scale flows simulated with and without NCTs are compared in terms of the meridional–vertical circulation, the zonal wind, and the potential temperature. Both results appear like the Hadley circulation. With the model parameters controlled, the differences between the results without NCTs and those with NCTs yield the linear biases due to omitting NCTs. The most prominent bias is a westerly wind bias in the ITCZ heating region that emerges because omitting NCTs prevents the associated westward acceleration when heating‐induced vertical motion is present. The zonal wind bias divided by the zonal wind with NCTs is 0.120 ± 0.007 in terms of the westerly maximum and 0.0452 ± 0.0005 in terms of the root mean square (RMS) when the prescribed ITCZ mimics the observed ITCZ in May over the East Pacific. These normalized measures of the zonal wind bias increase with a narrower ITCZ or an ITCZ closer to the Equator, because of a weaker subtropical jet stream given the same vertical heating profile. This difference can be traced by a nondimensional parameter scaling the ratio of the NCT to the traditional Coriolis term. The scaling encourages the restoration of NCTs into global models.

     
    more » « less