Abstract. Recent work has shown that variability in the subtropical jet's (STJ) latitude, ϕSTJ, is not coupled to that of the Hadley cell (HC) edge, ϕHC, but the robustness of this disconnect has not been examined in detail. Here, we use meteorological reanalysis products, comprehensive climate models, and an idealized atmospheric model to determine the necessary processes for a disconnect between ϕHC and ϕSTJ in the Northern Hemisphere's December–January–February season. We find that a decoupling can occur in a dry general circulation model, indicating that large-scale dynamical processes are sufficient to reproduce the metrics' relationship. It is therefore not reliant on explicit variability in the zonal structure, convection, or radiation. Rather, the disconnect requires a sufficiently realistic climatological basic state. Further, we confirm that the robust disconnect between ϕSTJ and ϕHC across the model hierarchy reveals their differing sensitivities to midlatitude eddy momentum fluxes; ϕHC is consistently coupled to the latitude of maximum eddy momentum flux, but ϕSTJ is not.
more »
« less
This content will become publicly available on December 16, 2025
Boreal Winter Hadley Cell Contraction in Response to the Incorporation of a Comprehensive Ocean Surface Albedo in CESM2
Abstract This study investigates the causes of shifts in the subsiding edge of the boreal winter Hadley cell (HC) in response to a comprehensive treatment of ocean surface albedo (OSA) in the fully coupled CESM2. The focus is on an in‐depth understanding of the atmospheric dynamical processes that influence the HC subsiding edge. Two sets of experiments were performed: one utilizing the default OSA, and the other employing the comprehensive OSA that accounts for realistic physical mechanisms. The results show that implementing the comprehensive OSA simulates an El Niño‐like warming pattern in reference to the default experiment, which leads to an HC contraction. Examination of zonal mean momentum dynamics in the upper troposphere reveals that variations in meridional winds, crucial for determining the HC extent, are primarily driven by the differences in the horizontal eddy momentum flux derivative. The findings indicate that the equatorward shift in meridional temperature gradients enhances subtropical zonal winds and baroclinicity along their equatorial flanks, amplifying equatorward‐propagating Rossby waves. This, in turn, alters the eddy momentum flux, reshaping the pattern of the derivatives of horizontal eddy momentum flux, constraining meridional winds, and resulting in the equatorward movement of the HC subsiding edge. A scaling theory further supports the results of the HC contraction, showing that the increased subtropical zonal winds and the equatorward shift of the Intertropical Convergence Zone (ITCZ) elevate the atmospheric angular momentum and eventually limit the expansion of the HC.
more »
« less
- Award ID(s):
- 2202812
- PAR ID:
- 10588111
- Publisher / Repository:
- The American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 23
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.more » « less
-
Abstract Qualities of the meridional movements of geopotential height anomalies in the upper troposphere of the subtropics are analysed via wavelet analysis using a meridional–temporal partial Morlet wavelet. Results show that power, which represents increased presence or amplitude of waves with direct meridional movement, is increased in regions where the corresponding equatorial winds in the upper troposphere are westerly or weakly easterly. Furthermore, equatorward power is enhanced near subtropical jet exit regions whereas poleward power is enhanced in jet entrance regions. Regressions of upper‐tropospheric winds, geopotential height, and outgoing long‐wave radiation (OLR) against the wavelet transforms demonstrate that the wavelets are identifying signals with tropical–extratropical interactions that are connected to organized convection in the tropics. The relationship of power with background‐state flow characteristics, including the horizontal winds and shear, are evaluated. Instead of the zonal wind and meridional shear of the zonal wind (du/dy), both the meridional wind and the zonal shear of the meridional wind (dv/dx) appear to have a clearer relationship with the power. Power is favoured for waves whose movement is aligned in the same direction as the meridional wind, and reduced in the opposite direction. Additionally, power increases with increasing zonal shear of the meridional wind in the Northern Hemisphere and with decreasing zonal shear of the meridional wind in the Southern Hemisphere. Power in the equatorward direction is stronger than in the poleward direction and more heavily influenced by background flow characteristics. Furthermore, power for wavelets with smaller meridional and temporal scales tends to have a higher sensitivity to the background horizontal flow as compared to larger meridional and temporal scales.more » « less
-
ITCZ Width Controls on Hadley Cell Extent and Eddy-Driven Jet Position and Their Response to WarmingThe impact of global warming–induced intertropical convergence zone (ITCZ) narrowing onto the higher-latitude circulation is examined in the GFDL Atmospheric Model, version 2.1 (AM2.1), run over zonally symmetric aquaplanet boundary conditions. A striking reconfiguration of the deep tropical precipitation from double-peaked, off-equatorial ascent to a single peak at the equator occurs under a globally uniform +4 K sea surface temperature (SST) perturbation. This response is found to be highly sensitive to the SST profile used to force the model. By making small (≤1 K) perturbations to the surface temperature in the deep tropics, varying control simulation precipitation patterns with both single and double ITCZs are generated. Across the climatologies, narrower regions of ascent correspond to more equatorward Hadley cell edges and eddy-driven jets. Under the global warming perturbation, the experiments in which there is narrowing of the ITCZ show significantly less expansion of the Hadley cell and somewhat less poleward shift of the eddy-driven jet than those without ITCZ narrowing. With a narrower ITCZ, the ascending air has larger zonal momentum, causing more westerly upper-tropospheric subtropical wind. In turn, this implies 1) the subtropical jet will become baroclinically unstable at a lower latitude and 2) the critical (zero wind) line will shift equatorward, allowing midlatitude eddies to propagate farther equatorward. Both of these mechanisms modify the Hadley cell edge position, and the latter affects the jet position.more » « less
-
Abstract The latitudinal precipitation distribution shows a secondary peak in midlatitudes and a minimum in the subtropics. This minimum is widely attributed to the descending branch of the Eulerian Hadley cell. This study however shows that the precipitation distribution aligns more closely with the transformed Eulerian mean (TEM) vertical motion. In Northern Hemisphere winter, maximum TEM descent (ascent) and precipitation minimum (maximum) are collocated at ~20°N (~40°N). The subtropical descent is mostly driven by the meridional flux of zonal momentum by large-scale eddies, while the midlatitude ascent is driven by the meridional flux of heat by the eddies. When the poleward eddy momentum flux is sufficiently strong, however, the secondary precipitation peak shifts to 60°N corresponding to the location of the TEM ascent driven by the eddy momentum flux. Moisture supply for the precipitation is aided by evaporation which is enhanced where the TEM descending branch brings down dry air from the upper troposphere/lower stratosphere. This picture is reminiscent of dry air intrusions in synoptic meteorology, suggesting that the descending branch may embody a zonal mean expression of dry air intrusions. Moist air rises following the TEM ascending branch, suggesting that the ascending branch may be interpreted as a zonal mean expression of warm conveyor belts. This study thus offers a large-scale dynamics perspective of the synoptic description of precipitation systems. The findings here also suggest that future changes in the eddy momentum flux, which is poorly understood, could play a pivotal role in determining the future precipitation distribution.more » « less