skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing by Programmable Particles.
This is a chapter in Book "Distributed Computing by Mobile Entities: Current Research in Moving and Computing", Springer Nature. The vision for programmable matter is to realize a physical substance that is scalable, versatile, instantly reconfigurable, safe to handle, and robust to failures. Programmable matter could be deployed in a variety of domain spaces to address a wide gamut of problems, including applications in construction, environmental science, synthetic biology, and space exploration. However, there are considerable engineering and computational challenges that must be overcome before such a system could be implemented. Towards developing efficient algorithms for novel programmable matter behaviors, the amoebot model for self-organizing particle systems and its variant, hybrid programmable matter, provide formal computational frameworks that facilitate rigorous algorithmic research. In this chapter, we discuss distributed algorithms under these models for shape formation, shape recognition, object coating, compression, shortcut bridging, and separation in addition to some underlying algorithmic primitives.  more » « less
Award ID(s):
1733680 1637393 1422603
PAR ID:
10084073
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Springer
Volume:
LNCS
Issue:
11340
ISSN:
0947-5427
Page Range / eLocation ID:
615-681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)
    Individual modules of programmable matter participate in their system’s collective behavior by expending energy to perform actions. However, not all modules may have access to the external energy source powering the system, necessitating a local and distributed strategy for supplying energy to modules. In this work, we present a general energy distribution framework for the canonical amoebot model of programmable matter that transforms energy-agnostic algorithms into energy-constrained ones with equivalent behavior and an 𝒪(n²)-round runtime overhead - even under an unfair adversary - provided the original algorithms satisfy certain conventions. We then prove that existing amoebot algorithms for leader election (ICDCN 2023) and shape formation (Distributed Computing, 2023) are compatible with this framework and show simulations of their energy-constrained counterparts, demonstrating how other unfair algorithms can be generalized to the energy-constrained setting with relatively little effort. Finally, we show that our energy distribution framework can be composed with the concurrency control framework for amoebot algorithms (Distributed Computing, 2023), allowing algorithm designers to focus on the simpler energy-agnostic, sequential setting but gain the general applicability of energy-constrained, asynchronous correctness. 
    more » « less
  2. Parallel and distributed computing (PDC) has become pervasive in all aspects of computing, and thus it is essential that students include parallelism and distribution in the computational thinking that they apply to problem solving, from the very beginning. Computer science education is still teaching to a 20th century model of algorithmic problem solving. Sequence, branch, and loop are taught in our early courses as the only organizing principles needed for algorithms, and we invest considerable time in showing how best to sequentially process large volumes of data. All computing devices that students use currently have multiple cores as well as a GPU in many cases. Most of their favorite applications use multiple cores and numbers of distributed processors. Often concurrency offers simpler solutions than sequential approaches. Industry is desperate for software engineers who think naturally in terms of exploiting these capabilities, rather than seeing them as an exotic upper-level topic that gets layered over a sequential solution. However, we are still teaching students to solve problems using sequential thinking. In this workshop we overview key PDC concepts and provide examples of how they may naturally be incorporated in early computing classes. We will introduce plugged and unplugged curriculum modules that have been successfully integrated in existing computing classes at multiple institutions. We will highlight the upcoming summer training workshop, for which we have funding to support attendance, as well as other CDER (Center for Parallel and Distributed Computing Curriculum Development and Educational Resources) activities. 
    more » « less
  3. The computation of Vietoris-Rips persistence barcodes is both execution-intensive and memory-intensive. In this paper, we study the computational structure of Vietoris-Rips persistence barcodes, and identify several unique mathematical properties and algorithmic opportunities with connections to the GPU. Mathematically and empirically, we look into the properties of apparent pairs, which are independently identifiable persistence pairs comprising up to 99% of persistence pairs. We give theoretical upper and lower bounds of the apparent pair rate and model the average case. We also design massively parallel algorithms to take advantage of the very large number of simplices that can be processed independently of each other. Having identified these opportunities, we develop a GPU-accelerated software for computing Vietoris-Rips persistence barcodes, called Ripser++. The software achieves up to 30x speedup over the total execution time of the original Ripser and also reduces CPU-memory usage by up to 2.0x. We believe our GPU-acceleration based efforts open a new chapter for the advancement of topological data analysis in the post-Moore's Law era. 
    more » « less
  4. This paper presents an overview of an NSF Research Experience for Undergraduate (REU) Site on Trust and Reproducibility of Intelligent Computation, delivered by faculty and graduate students in the Kahlert School of Computing at University of Utah. The chosen themes bring together several concerns for the future in produc- ing computational results that can be trusted: secure, reproducible, based on sound algorithmic foundations, and developed in the context of ethical considerations. The research areas represented by student projects include machine learning, high-performance computing, algorithms and applications, computer security, data science, and human-centered computing. In the first four weeks of the program, the entire student cohort spent their mornings in lessons from experts in these crosscutting topics, and used one-of-a-kind research platforms operated by the University of Utah, namely NSF-funded CloudLab and POWDER facilities; reading assignments, quizzes, and hands-on exercises reinforced the lessons. 
    more » « less
  5. Early research on physical human–robot interaction (pHRI) has necessarily focused on device design—the creation of compliant and sensorized hardware, such as exoskeletons, prostheses, and robot arms, that enables people to safely come in contact with robotic systems and to communicate about their collaborative intent. As hardware capabilities have become sufficient for many applications, and as computing has become more powerful, algorithms that support fluent and expressive use of pHRI systems have begun to play a prominent role in determining the systems’ usefulness. In this review, we describe a selection of representative algorithmic approaches that regulate and interpret pHRI, describing the progression from algorithms based on physical analogies, such as admittance control, to computational methods based on higher-level reasoning, which take advantage of multimodal communication channels. Existing algorithmic approaches largely enable task-specific pHRI, but they do not generalize to versatile human–robot collaboration. Throughout the review and in our discussion of next steps, we therefore argue that emergent embodied dialogue—bidirectional, multimodal communication that can be learned through continuous interaction—is one of the next frontiers of pHRI. 
    more » « less