The Azores High is a subtropical high-pressure ridge in the North Atlantic surrounded by anticyclonic winds that steer rain-bearing weather systems. The size and intensity of the Azores High modulate the oceanic moisture transport to Europe thereby affecting hydroclimate across western Europe, especially during wintertime. While changes in the North Atlantic storm track have been linked to the variability of the North Atlantic Oscillation (NAO), we focus on North Atlantic variability with a subtropical perspective by focusing on the Azores High independently of the Icelandic Low. The subtropical perspective provides a direct understanding of regional climate variability in the western Mediterranean and reveals dramatic changes to North Atlantic climate throughout the past century and can provide insight into the impact of future warming on the dynamics of the Azores High and associated hydroclimate. Here we show that winters with an extremely large Azores High are significantly more common in the industrial era (since 1850 CE) than in preindustrial times, resulting in anomalously dry conditions across the western Mediterranean, including the Iberian Peninsula. Climate model simulations of the past millennium indicate that the industrial-era expansion of the Azores High is unprecedented throughout the last millennium (since 850 CE), consistent with proxy evidence from Portugal. Azores High expansion emerges after the end of the Little Ice Age and strengthens into the 20th century consistent with anthropogenically-driven warming.
more »
« less
On the Drivers of Decadal Variability of the Gulf Stream North Wall
The Gulf Stream is bounded to the north by a strong temperature front known as the North Wall. The North Wall is subject to variability on a wide range of temporal and spatial scales—on interannual time scales, the dominant mode of variability is a longitudinally coherent north–south migration. North Wall variability since 1970 has been characterized by regular oscillations with a period of approximately nine years. This periodic variability, and its relationship to major modes of Atlantic climate variability, is examined in the frequency domain. The North Atlantic Oscillation (NAO) and the Atlantic meridional mode (AMM) both covary with the North Wall on decadal time scales. The NAO leads the North Wall by about one year, whereas the covariability between the North Wall and the AMM is synchronous (no lag). Covariability between the North Wall and the NAO is further examined in terms of the centers of action comprising the NAO: the Icelandic low and Azores high. It is found that the strength of the Icelandic low and its latitude as well as the strength of the Azores high play a role in decadal North Wall variability.
more »
« less
- Award ID(s):
- 1634829
- PAR ID:
- 10084186
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- p. 1235-1249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.more » « less
-
null (Ed.)Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO.more » « less
-
null (Ed.)Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.more » « less
-
Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.more » « less
An official website of the United States government
