skip to main content

Title: Combined Influences on North American Winter Air Temperature Variability from North Pacific Blocking and the North Atlantic Oscillation: Subseasonal and Interannual Time Scales
Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projecting more » onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO + events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO. « less
Authors:
; ; ; ;
Award ID(s):
1743738
Publication Date:
NSF-PAR ID:
10233633
Journal Name:
Journal of Climate
Volume:
33
Issue:
16
Page Range or eLocation-ID:
7101 to 7123
ISSN:
0894-8755
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the westernmore »vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter.« less
  2. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomalymore »appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis.« less
  3. Abstract From 5 July to 11 September 2012, the Amundsen–Scott South Pole station experienced an unprecedented 78 days in a row with a maximum temperature at or below −50°C. Aircraft and ground-based activity cannot function without risk below this temperature. Lengthy periods of extreme cold temperatures are characterized by a drop in pressure of around 15 hPa over 4 days, accompanied by winds from grid east. Periodic influxes of warm air from the Weddell Sea raise the temperature as the wind shifts to grid north. The end of the event occurs when the temperature increase is enough to move past the −50°C threshold. This study also examines the length of extreme cold periods. The number of days below −50°C in early winter has been decreasing since 1999, and this trend is statistically significant at the 5% level. Late winter shows an increase in the number of days below −50°C for the same period, but this trend is not statistically significant. Changes in the southern annular mode, El Niño–Southern Oscillation, and the interdecadal Pacific oscillation/tripole index are investigated in relation to the initiation of extreme cold events. None of the correlations are statistically significant. A positive southern annular mode and amore »La Niña event or a central Pacific El Niño–Southern Oscillation pattern would position the upper-level circulation to favor a strong, symmetrical polar vortex with strong westerlies over the Southern Ocean, leading to a cold pattern over the South Pole. Significance Statement The Amundsen–Scott South Pole station is the coldest Antarctic station staffed year-round by U.S. personnel. Access to the station is primarily by airplane, especially during the winter months. Ambient temperature limits air access as planes cannot operate at minimum temperatures below −50°C. The station gets supplies during the winter months if needed, and medical emergencies can happen requiring evacuations. Knowing when planes would be able to fly is crucial, especially for life-saving efforts. During 2012, a record 78 continuous days of temperatures below −50°C occurred. A positive southern annular mode denoting strong westerly winds over the Pacific Ocean and a strong polar vortex over the South Pole contribute to the maintenance of long periods of extremely cold temperatures.« less
  4. Abstract. Possible mechanisms behind the longevity of intense Long IslandSound (LIS) water temperature events are examined using an event-basedapproach. By decomposing an LIS surface water temperature time series intonegative and positive events, it is revealed that the most intense LIS watertemperature event in the 1979–2013 period occurred around 2012, coincidingwith the 2012 ocean heat wave across the Mid-Atlantic Bight. The LIS eventsare related to a ridge–trough dipole pattern whose strength and evolution canbe determined using a dipole index. The dipole index was shown to be stronglycorrelated with LIS water temperature anomalies, explaining close to 64 %of cool-season LIS water temperature variability. Consistently, a majordipole pattern event coincided with the intense 2012 LIS warm event. Acomposite analysis revealed that long-lived intense LIS water temperatureevents are associated with tropical sea surface temperature (SST) patterns.The onset and mature phases of LIS cold events were shown to coincide withcentral Pacific El Niño events, whereas the termination of LIS coldevents was shown to possibly coincide with canonical El Niño events or ElNiño events that are a mixture of eastern and central Pacific El Niñoflavors. The mature phase of LIS warm events was shown to be associated withnegative SST anomalies across the central equatorial Pacific, though theresultsmore »were not found to be robust. The dipole pattern was also shown to berelated to tropical SST patterns, and fluctuations in central Pacific SSTanomalies were shown to evolve coherently with the dipole pattern and thestrongly related East Pacific–North Pacific pattern on decadal timescales.The results from this study have important implications for seasonal anddecadal prediction of the LIS thermal system.« less
  5. Abstract

    In this study, we investigate whether the Pacific decadal oscillation (PDO) can enhance or diminish El Niño Southern Oscillation (ENSO) temperature and precipitation teleconnections over North America using five single model initial-condition large ensembles (SMILEs). The use of SMILEs facilitates a statistically robust comparison of ENSO events that occur during different phases of the PDO. We find that a positive PDO enhances winter and spring El Niño temperature and precipitation teleconnections and diminishes La Niña teleconnections. A negative PDO has the opposite effect. The modulation of ENSO by the PDO is mediated by differences in the location and strength of the Aleutian Low and Pacific Jet during ENSO events under different phases of the PDO. This modulation is a simple combination of the individual effects of the PDO and ENSO over North America. Finally, we show that ENSO and the PDO can be used to evaluate the likelihood of the occurrence of temperature and precipitation anomalies in different regions, but cannot be used as a deterministic predictor of these anomalies due to the large variability between individual events.