skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorescence-based methods for measuring target interference by CRISPR–Cas systems
Type I, II, and V CRISPR–Cas systems are RNA-guided dsDNA targeting defense mechanisms found in bacteria and archaea. During CRISPR interference, Cas effectors use CRISPR-derived RNAs (crRNAs) as guides to bind complementary sequences in foreign dsDNA, leading to the cleavage and destruction of the DNA target. Mutations within the target or in the protospacer adjacent motif can reduce the level of CRISPR interference, although the level of defect is dependent on the type and position of the mutation, as well as the guide sequence of the crRNA. Given the importance of Cas effectors in host defense and for biotechnology tools, there has been considerable interest in developing sensitive methods for detecting Cas effector activity through CRISPR interference. In this chapter, we describe an in vivo fluorescence-based method for monitoring plasmid interference in Escherichia coli. This approach uses a green fluorescent protein reporter to monitor varying plasmid levels within bacterial colonies, or to measure the rate of plasmid-loss in bacterial populations over time. We demonstrate the use of this simple plasmid-loss assay for both chromosomally integrated and plasmid-borne CRISPR–Cas systems.  more » « less
Award ID(s):
1652661
PAR ID:
10084484
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Methods in enzymology
Volume:
616
ISSN:
0076-6879
Page Range / eLocation ID:
61-85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CRISPR-Cas systems are a family of adaptive immune systems that use small CRISPR RNAs (crRNAs) and CRISPR-associated (Cas) nucleases to protect prokaryotes from invading plasmids and viruses (i.e., phages). Type III systems launch a multilayered immune response that relies upon both Cas and non-Cas cellular nucleases, and although the functions of Cas components have been well described, the identities and roles of non-Cas participants remain poorly understood. Previously, we showed that the type III-A CRISPR-Cas system in Staphylococcus epidermidis employs two degradosome-associated nucleases, PNPase and RNase J2, to promote crRNA maturation and eliminate invading nucleic acids (Chou-Zheng and Hatoum-Aslan, 2019). Here, we identify RNase R as a third ‘housekeeping’ nuclease critical for immunity. We show that RNase R works in concert with PNPase to complete crRNA maturation and identify specific interactions with Csm5, a member of the type III effector complex, which facilitate nuclease recruitment/stimulation. Furthermore, we demonstrate that RNase R and PNPase are required to maintain robust anti-plasmid immunity, particularly when targeted transcripts are sparse. Altogether, our findings expand the known repertoire of accessory nucleases required for type III immunity and highlight the remarkable capacity of these systems to interface with diverse cellular pathways to ensure successful defense. 
    more » « less
  2. Just as humans are susceptible to viruses, bacteria have their own viruses to contend with. These viruses – known as phages – attach to the surface of bacterial cells, inject their genetic material, and use the cells’ enzymes to multiply while destroying their hosts. To defend against a phage attack, bacteria have evolved a variety of immune systems. For example, when a bacterium with an immune system known as CRISPR-Cas encounters a phage, the system creates a ‘memory’ of the invader by capturing a small snippet of the phage’s genetic material. The pieces of phage DNA are copied into small molecules known as CRISPR RNAs, which then combine with one or more Cas proteins to form a group called a Cas complex. This complex patrols the inside of the cell, carrying the CRISPR RNA for comparison, similar to the way a detective uses a fingerprint to identify a criminal. Once a match is found, the Cas proteins chop up the invading genetic material and destroy the phage. There are several different types of CRISPR-Cas systems. Type III systems are among the most widespread in nature and are unique in that they provide a nearly impenetrable barrier to phages attempting to infect bacterial cells. Medical researchers are exploring the use of phages as alternatives to conventional antibiotics and so it is important to find ways to overcome these immune responses in bacteria. However, it remains unclear precisely how Type III CRISPR-Cas systems are able to mount such an effective defense. Chou-Zheng and Hatoum-Aslan used genetic and biochemical approaches to study the Type III CRISPR-Cas system in a bacterium called Staphylococcus epidermidis. The experiments showed that two enzymes called PNPase and RNase J2 played crucial roles in the defense response triggered by the system. PNPase helped to generate CRISPR RNAs and both enzymes were required to help to destroy genetic material from invading phages. Previous studies have shown that PNPase and RNase J2 are part of a machine in bacterial cells that usually degrades damaged genetic material. Therefore, these findings show that the Type III CRISPR-Cas system in S. epidermidis has evolved to coordinate with another pathway to help the bacteria survive attack from phages. CRISPR-Cas immune systems have formed the basis for a variety of technologies that continue to revolutionize genetics and biomedical research. Therefore, along with aiding the search for alternatives to antibiotics, this work may potentially inspire the development of new genetic technologies in the future. 
    more » « less
  3. Barr, Jeremy J. (Ed.)
    CRISPR-mediated interference relies on complementarity between a guiding CRISPR RNA (crRNA) and target nucleic acids to provide defense against bacteriophage. Phages escape CRISPR-based immunity mainly through mutations in the protospacer adjacent motif (PAM) and seed regions. However, previous specificity studies of Cas effectors, including the class 2 endonuclease Cas12a, have revealed a high degree of tolerance of single mismatches. The effect of this mismatch tolerance has not been extensively studied in the context of phage defense. Here, we tested defense against lambda phage provided by Cas12a-crRNAs containing preexisting mismatches against the genomic targets in phage DNA. We find that most preexisting crRNA mismatches lead to phage escape, regardless of whether the mismatches ablate Cas12a cleavage in vitro. We used high-throughput sequencing to examine the target regions of phage genomes following CRISPR challenge. Mismatches at all locations in the target accelerated emergence of mutant phage, including mismatches that greatly slowed cleavage in vitro. Unexpectedly, our results reveal that a preexisting mismatch in the PAM-distal region results in selection of mutations in the PAM-distal region of the target. In vitro cleavage and phage competition assays show that dual PAM-distal mismatches are significantly more deleterious than combinations of seed and PAM-distal mismatches, resulting in this selection. However, similar experiments with Cas9 did not result in emergence of PAM-distal mismatches, suggesting that cut-site location and subsequent DNA repair may influence the location of escape mutations within target regions. Expression of multiple mismatched crRNAs prevented new mutations from arising in multiple targeted locations, allowing Cas12a mismatch tolerance to provide stronger and longer-term protection. These results demonstrate that Cas effector mismatch tolerance, existing target mismatches, and cleavage site strongly influence phage evolution. 
    more » « less
  4. Hatfull, Graham F. (Ed.)
    ABSTRACT Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications. 
    more » « less
  5. Pfeiffer, Julie K. (Ed.)
    ABSTRACT The interplay between defense and counterdefense systems of bacteria and bacteriophages has been driving the evolution of both organisms, leading to their great genetic diversity. Restriction-modification systems are well-studied defense mechanisms of bacteria, while phages have evolved covalent modifications as a counterdefense mechanism to protect their genomes against restriction. Here, we present evidence that these genome modifications might also have been selected to counter, broadly, the CRISPR-Cas systems, an adaptive bacterial defense mechanism. We found that the phage T4 genome modified by cytosine hydroxymethylation and glucosylation (ghmC) exhibits various degrees of resistance to the type V CRISPR-Cas12a system, producing orders of magnitude more progeny than the T4(C) mutant, which contains unmodified cytosines. Furthermore, the progeny accumulated CRISPR escape mutations, allowing rapid evolution of mutant phages under CRISPR pressure. A synergistic effect on phage restriction was observed when two CRISPR-Cas12a complexes were targeted to independent sites on the phage genome, another potential countermechanism by bacteria to more effectively defend themselves against modified phages. These studies suggest that the defense-counterdefense mechanisms exhibited by bacteria and phages, while affording protection against one another, also provide evolutionary benefits for both. IMPORTANCE Restriction-modification (R-M) and CRISPR-Cas systems are two well-known defense mechanisms of bacteria. Both recognize and cleave phage DNA at specific sites while protecting their own genomes. It is well accepted that T4 and other phages have evolved counterdefense mechanisms to protect their genomes from R-M cleavage by covalent modifications, such as the hydroxymethylation and glucosylation of cytosine. However, it is unclear whether such genome modifications also provide broad protection against the CRISPR-Cas systems. Our results suggest that genome modifications indeed afford resistance against CRISPR systems. However, the resistance is not complete, and it is also variable, allowing rapid evolution of mutant phages that escape CRISPR pressure. Bacteria in turn could target more than one site on the phage genome to more effectively restrict the infection of ghmC-modified phage. Such defense-counterdefense strategies seem to confer survival advantages to both the organisms, one of the possible reasons for their great diversity. 
    more » « less