Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way calledmore »
GraphBTM: Graph Enhanced Autoencoded Variational Inference for Biterm Topic Model
Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way called GraphBTM to represent biterms as graphs and design Graph Convolutional Net- works (GCNs) with residual connections to extract transitive features from biterms. To overcome the data sparsity of LDA and the strong assumption of BTM, we sample a fixed number of documents to form a mini-corpus as a training instance. We also propose a dataset called All News extracted from (Thompson, 2017), in which documents are much longer than 20 Newsgroups. We present an amortized variational inference method for GraphBTM. Our method generates more coherent topics compared with previous approaches. Exper- iments show that the sampling strategy im- proves performance more »
- Award ID(s):
- 1747783
- Publication Date:
- NSF-PAR ID:
- 10084511
- Journal Name:
- Conference on Empirical Methods in Natural Language Processing (EMNLP 2018)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Topic modeling, a method for extracting the underlying themes from a collection of documents, is an increasingly important component of the design of intelligent systems enabling the sense-making of highly dynamic and diverse streams of text data related but not limited to scientific discovery. Traditional methods such as Dynamic Topic Modeling (DTM) do not lend themselves well to direct parallelization because of dependencies from one time step to another. In this paper, we introduce and empirically analyze Clustered Latent Dirichlet Allocation (CLDA), a method for extracting dynamic latent topics from a collection of documents. Our approach is based on datamore »
-
Machine learning techniques underlying Big Data analytics have the potential to benefit data intensive communities in e.g., bioinformatics and neuroscience domain sciences. Today’s innovative advances in these domain communities are increasingly built upon multi-disciplinary knowledge discovery and cross-domain collaborations. Consequently, shortened time to knowledge discovery is a challenge when investigating new methods, developing new tools, or integrating datasets. The challenge for a domain scientist particularly lies in the actions to obtain guidance through query of massive information from diverse text corpus comprising of a wide-ranging set of topics. In this paper, we propose a novel “domain-specific topic model” (DSTM) thatmore »
-
Agent-based models (ABM) play a prominent role in guiding critical decision-making and supporting the development of effective policies for better urban resilience and response to the COVID-19 pandemic. However, many ABMs lack realistic representations of human mobility, a key process that leads to physical interaction and subsequent spread of disease. Therefore, we propose the application of Latent Dirichlet Allocation (LDA), a topic modeling technique, to foot-traffic data to develop a realistic model of human mobility in an ABM that simulates the spread of COVID-19. In our novel approach, LDA treats POIs as "words" and agent home census block groups (CBGs)more »
-
Dalalyan, Aynak (Ed.)Topic models have become popular tools for dimension reduction and exploratory analysis of text data which consists in observed frequencies of a vocabulary of p words in n documents, stored in a p×n matrix. The main premise is that the mean of this data matrix can be factorized into a product of two non-negative matrices: a p×K word-topic matrix A and a K×n topic-document matrix W. This paper studies the estimation of A that is possibly element-wise sparse, and the number of topics K is unknown. In this under-explored context, we derive a new minimax lower bound for the estimationmore »