skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrothermal Liquefaction of Galdieria sulphuraria Grown on Municipal Wastewater
Subcritical hydrothermal liquefaction uses high temperatures (270-350°C) and high pressures (80-173 bar) to produce bio-crude oils that can be upgraded to liquid transportation fuels. In this study, two strains of Galdieria sulphuraria, an acidophilic, mixotrophic red microalgae, were cultivated on effluent from primary settling tanks at a municipal wastewater treatment plant. Samples were concentrated to 5 and 10 wt.% slurries after harvest and converted by hydrothermal liquefaction in a 1.8 L batch reactor. Reaction conditions included temperatures of 310, 330 and 350°C, and hold times of 5, 30 and 60 minutes. Yields and product properties were compared to those of hydrothermal liquefaction of Galdieria sulphuraria grown on media. Total oil yields were low (11-18 wt.%) and char yields were high (28-36 wt.%) compared to those from HTL of the algae grown on media (27-35 wt.% oil and 10-13 wt.% char), likely due to the higher ash content and lower lipid content of the algae grown on wastewater. The bio-crude oil, char, and aqueous phase samples were characterized to complete mass, energy and nutrient balances to characterize the tradeoffs in the algae growth and conversion systems for energy and nutrient recovery.  more » « less
Award ID(s):
1301346
PAR ID:
10084640
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2017 ASABE Annual International Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, the effect of hydrothermal liquefaction (HTL) of waste PVC was investigated in the presence of acidic hydrochar. The hydrochar was prepared by hydrothermal carbonization of pineapple waste at 250 °C and at 1 h in the presence of citric acid. Hydrochar was acidic, stable, and porous and contained acidic functional groups. Hydrochar was co-fed with PVC during HTL to enhance HTL conversion and quality of the plastic crude oil. HTL experiments were performed at 300–350 °C, 0.25–4 h of reaction times, and 0–20 wt% hydrochar-to-PVC ratio. The plastic crude oil was separated from the solid residue to evaluate HTL conversion and to analyze elemental compositions, boiling point distribution, alteration of chemical bonds, and chemical compositions. The results showed that acidic hydrochar enhances HTL conversion with a maximum value of 28.75 at 5 wt% hydrochar content at 350 °C and 0.5 h. Furthermore, plastic crude oils contained no chloride but contained significantly high carbon and hydrogen, resulting in a higher heating value of up to 36.43 MJ/kg. The major component of the plastic crude oil was 3, 5 dimethylphenol produced ranging from 61.4 to 86.4% (percentage of total identified area) according to gas chromatography mass spectroscopy (GCMS) data. 
    more » « less
  2. Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an in situ heterogeneous catalyst for two different thermochemical conversion processes: pyrolysis and hydrothermal carbonization (HTC). Avocado pits were combined with 20 wt% bentonite clay and were pyrolyzed at 600 °C and hydrothermally carbonized at 250 °C, commonly used conditions across the literature. During pyrolysis, bentonite clay promoted Diels–Alder reactions that transformed furans to aromatic compounds, which decreased the bio-oil oxygen content and produced a fuel closer to being suitable for existing infrastructure. The HTC bio-oil without the clay catalyst contained 100% furans, mainly 5-methylfurfural, but in the presence of the clay, approximately 25% of the bio-oil was transformed to 2-methyl-2-cyclopentenone, thereby adding two hydrogen atoms and removing one oxygen. The use of clay in both processes decreased the relative oxygen content of the bio-oils. Proximate analysis of the resulting chars showed an increase in fixed carbon (FC) and a decrease in volatile matter (VM) with clay inclusion. By containing more FC, the HTC-derived char may be more stable than pyrolysis-derived char for environmental applications. The addition of bentonite clay to both processes did not produce significantly different bio-oil yields, such that by adding a clay catalyst, a more valuable bio-oil was produced without reducing the amount of bio-oil recovered. 
    more » « less
  3. A total of 5.4 million tons of face masks were generated worldwide annually in 2021. Most of these used masks went to landfills or entered the environment, posing serious risks to wildlife, humans, and ecosystems. In this study, batch low-pressure hydrothermal processing (LP-HTP) methods are developed to convert disposable face masks into oils. Three different materials from face masks were studied to find optimal processing conditions for converting full face masks into oil. The oil and gas yields, as well as oil compositions, depend on the feedstock composition, particle size, and reaction conditions. Yields of 82 wt.% oil, 17 wt.% gas, and minimal char (~1 wt.%) were obtained from full masks. LP-HTP methods for converting face masks have higher oil yields than pyrolysis methods in the literature and have lower operating pressures than supercritical water liquefaction. LP-HTP methods for face masks can increase net energy returns by 3.4 times and reduce GHG emissions by 95% compared to incineration. LP-HTP has the potential to divert 5.4 million tons of waste masks annually from landfills and the environment, producing approximately 4.4 million tons of oil. 
    more » « less
  4. Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry. 
    more » « less
  5. Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry. 
    more » « less