skip to main content


Title: Effect of Acidic Hydrochar on Plastic Crude Oil Produced from Hydrothermal Liquefaction of Waste PVC
In this study, the effect of hydrothermal liquefaction (HTL) of waste PVC was investigated in the presence of acidic hydrochar. The hydrochar was prepared by hydrothermal carbonization of pineapple waste at 250 °C and at 1 h in the presence of citric acid. Hydrochar was acidic, stable, and porous and contained acidic functional groups. Hydrochar was co-fed with PVC during HTL to enhance HTL conversion and quality of the plastic crude oil. HTL experiments were performed at 300–350 °C, 0.25–4 h of reaction times, and 0–20 wt% hydrochar-to-PVC ratio. The plastic crude oil was separated from the solid residue to evaluate HTL conversion and to analyze elemental compositions, boiling point distribution, alteration of chemical bonds, and chemical compositions. The results showed that acidic hydrochar enhances HTL conversion with a maximum value of 28.75 at 5 wt% hydrochar content at 350 °C and 0.5 h. Furthermore, plastic crude oils contained no chloride but contained significantly high carbon and hydrogen, resulting in a higher heating value of up to 36.43 MJ/kg. The major component of the plastic crude oil was 3, 5 dimethylphenol produced ranging from 61.4 to 86.4% (percentage of total identified area) according to gas chromatography mass spectroscopy (GCMS) data.

 
more » « less
Award ID(s):
2123495
NSF-PAR ID:
10475667
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Processes
Volume:
10
Issue:
12
ISSN:
2227-9717
Page Range / eLocation ID:
2538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Subcritical hydrothermal liquefaction uses high temperatures (270-350°C) and high pressures (80-173 bar) to produce bio-crude oils that can be upgraded to liquid transportation fuels. In this study, two strains of Galdieria sulphuraria, an acidophilic, mixotrophic red microalgae, were cultivated on effluent from primary settling tanks at a municipal wastewater treatment plant. Samples were concentrated to 5 and 10 wt.% slurries after harvest and converted by hydrothermal liquefaction in a 1.8 L batch reactor. Reaction conditions included temperatures of 310, 330 and 350°C, and hold times of 5, 30 and 60 minutes. Yields and product properties were compared to those of hydrothermal liquefaction of Galdieria sulphuraria grown on media. Total oil yields were low (11-18 wt.%) and char yields were high (28-36 wt.%) compared to those from HTL of the algae grown on media (27-35 wt.% oil and 10-13 wt.% char), likely due to the higher ash content and lower lipid content of the algae grown on wastewater. The bio-crude oil, char, and aqueous phase samples were characterized to complete mass, energy and nutrient balances to characterize the tradeoffs in the algae growth and conversion systems for energy and nutrient recovery. 
    more » « less
  2. Valorization of agricultural and food waste digestates is crucial for sustainable waste management to reduce environmental impacts and improve the economics of commercial farms. Hydrothermal liquefaction (HTL) of anaerobic digestates was evaluated to recover resources by converting them into carbon-dense biocrude oil and a nutrient-rich HTL aqueous phase (HTL-AP) coproduct. The effects of HTL temperature (280–360 °C), reaction time (10–50 min), feedstock pH (2.5–8.5), digestate salt content (1–5 wt%), and digestate cellulose-to-lignin ratio (0.2–1.8) on energy and nutrient recovery were systematically investigated in a set of well-designed experiments following a half-fractional central composite protocol. Response surface analysis combined with HTL product characterization and comparative literature study produced a comprehensive reaction pathway for HTL of anaerobic digestates. Moreover, this analysis revealed the importance of acidic feedstocks (pH 3.00–5.53), high reaction temperatures (337–360 °C), and reaction times <45 or 45–50 min for digestates with Cel/Lig >1 or <1, for maximizing the energy recovered in biocrude (high carbon yield and low heteroatom content) and the amounts of P, NH 3 –N, and Mg distributed in the HTL-AP. Acidic conditions catalyzed biocrude production, inhibited the Maillard reaction (lowering the nitrogen content in biocrude), and partitioned nutrients into the HTL-AP. Higher reaction temperatures coupled with longer reaction times activated hydro-denitrogenation and deoxygenation reactions to improve biocrude quality. This work provides not only validated methods to achieve targeted resource recovery for specific feedstock compositions using HTL, but also a comprehensive mechanistic understanding of the HTL of biomass waste for controlling target product characteristics. 
    more » « less
  3. Chemical recycling via thermal processes such as pyrolysis is a potentially viable way to convert mixed streams of waste plastics into usable fuels and chemicals. Unfortunately, experimentally measuring product yields for real waste streams can be timeand cost-prohibitive, and the yields are very sensitive to feed composition, especially for certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC). Models capable of predicting yields and conversion from feed composition and reaction conditions have potential as tools to prioritize resources to the most promising plastic streams and to evaluate potential preseparation strategies to improve yields. In this study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected from the open literature. The data set was divided into training and test sub data sets; the training data were used to optimize the seven different machine learning regression methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated, and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River plastics should be net exergy producing under most reasonable conditions. 
    more » « less
  4. Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an in situ heterogeneous catalyst for two different thermochemical conversion processes: pyrolysis and hydrothermal carbonization (HTC). Avocado pits were combined with 20 wt% bentonite clay and were pyrolyzed at 600 °C and hydrothermally carbonized at 250 °C, commonly used conditions across the literature. During pyrolysis, bentonite clay promoted Diels–Alder reactions that transformed furans to aromatic compounds, which decreased the bio-oil oxygen content and produced a fuel closer to being suitable for existing infrastructure. The HTC bio-oil without the clay catalyst contained 100% furans, mainly 5-methylfurfural, but in the presence of the clay, approximately 25% of the bio-oil was transformed to 2-methyl-2-cyclopentenone, thereby adding two hydrogen atoms and removing one oxygen. The use of clay in both processes decreased the relative oxygen content of the bio-oils. Proximate analysis of the resulting chars showed an increase in fixed carbon (FC) and a decrease in volatile matter (VM) with clay inclusion. By containing more FC, the HTC-derived char may be more stable than pyrolysis-derived char for environmental applications. The addition of bentonite clay to both processes did not produce significantly different bio-oil yields, such that by adding a clay catalyst, a more valuable bio-oil was produced without reducing the amount of bio-oil recovered. 
    more » « less
  5. Abstract

    This study focused on evaluating the reduction of chlorine content in waste polyvinyl chloride (WPVC) through high‐temperature catalytic hydrothermal treatment (HTT). Catalytic HTT experiments were carried out to evaluate the effect of noble metal catalysts (Ru/C, Pt/C, and Pd/C), residence time (0.5, 1, 2, and, 4 h), reaction temperature (300, 325, and 350°C), and catalyst loading (0, 5, and 10 wt%). The findings indicated that dechlorination efficiency can be achieved by 99.01% at 350°C and 1 h, with 10 wt% Pd/C loading. Based on chlorine balance, the chlorine content of the solid phase significantly decreased from 568.8 to 5.64 g kg−1at the same condition. The catalytic HTT solid residue ash has low chlorine content under most operational conditions. These results suggest that catalytic HTT is an effective method to dechlorinate WPVC as a high‐halogenated waste plastic in order to reduce its harmful effect on the environment.

     
    more » « less