skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Malrec: Compact Full-Trace Malware Recording for Retrospective Deep Analysis
Malware sandbox systems have become a critical part of the Internet’s defensive infrastructure. These systems allow malware researchers to quickly understand a sample’s behavior and effect on a system. However, current systems face two limitations: first, for performance reasons, the amount of data they can collect is limited (typically to system call traces and memory snapshots). Second, they lack the ability to perform retrospective analysis—that is, to later extract features of the malware’s execution that were not considered relevant when the sample was originally executed. In this paper, we introduce a new malware sandbox system, Malrec, which uses whole-system deterministic record and replay to capture high-fidelity, whole-system traces of malware executions with low time and space overheads. We demonstrate the usefulness of this system by presenting a new dataset of 66,301 malware recordings collected over a two-year period, along with two preliminary analyses that would not be possible without full traces: an analysis of kernel mode malware and exploits, and a fine-grained malware family classification based on textual memory access contents. The Malrec system and dataset can help provide a standardized benchmark for evaluating the performance of future dynamic analyses.  more » « less
Award ID(s):
1657199
PAR ID:
10084747
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Detection of Intrusions and Malware, and Vulnerability Assessment
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thanks to the numerous machine learning based malware detection (MLMD) research in recent years and the readily available online malware scanning system (e.g., VirusTotal), it becomes relatively easy to build a seemingly successful MLMD system using the following standard procedure: first prepare a set of ground truth data by checking with VirusTotal, then extract features from training dataset and build a machine learning detection model, and finally evaluate the model with a disjoint testing dataset. We argue that such evaluation methods do not expose the real utility of ML based malware detection in practice since the ML model is both built and tested on malware that are known at the time of training. The user could simply run them through VirusTotal just as how the researchers obtained the ground truth, instead of using the more sophisticated ML approach. However, ML based malware detection has the potential of identifying malware that has not been known at the time of training, which is the real value ML brings to this problem. We present experimentation study on how well a machine learning based malware detection system can achieve this. Our experiments showed that MLMD can consistently generate previously unknown malware knowledge, e.g., malware that is not detectable by existing malware detection systems at MLMD’s training time. Our research illustrates an ideal usage scenario for MLMD systems and demonstrates that such systems can benefit malware detection in practice. For example, by utilizing the new signals provided by the MLMD system and the detection capability of existing malware detection systems, we can more quickly uncover new malware variants or families. 
    more » « less
  2. Binary program dependence analysis determines dependence between instructions and hence is important for many applications that have to deal with executables without any symbol information. A key challenge is to identify if multiple memory read/write instructions access the same memory location. The state-of-the-art solution is the value set analysis (VSA) that uses abstract interpretation to determine the set of addresses that are possibly accessed by memory instructions. However, VSA is conservative and hence leads to a large number of bogus dependences and then substantial false positives in downstream analyses such as malware behavior analysis. Furthermore, existing public VSA implementations have difficulty scaling to complex binaries. In this paper, we propose a new binary dependence analysis called BDA enabled by a randomized abstract interpretation technique. It features a novel whole program path sampling algorithm that is not biased by path length, and a per-path abstract interpretation avoiding precision loss caused by merging paths in traditional analyses. It also provides probabilistic guarantees. Our evaluation on SPECINT2000 programs shows that it can handle complex binaries such as gcc whereas VSA implementations from the-state-of-art platforms have difficulty producing results for many SPEC binaries. In addition, the dependences reported by BDA are 75 and 6 times smaller than Alto, a scalable binary dependence analysis tool, and VSA, respectively, with only 0.19% of true dependences observed during dynamic execution missed (by BDA). Applying BDA to call graph generation and malware analysis shows that BDA substantially supersedes the commercial tool IDA in recovering indirect call targets and outperforms a state-of-the-art malware analysis tool Cuckoo by disclosing 3 times more hidden payloads. 
    more » « less
  3. null (Ed.)
    Traditionally, Android malware is analyzed using static or dynamic analysis. Although static techniques are often fast; however, they cannot be applied to classify obfuscated samples or malware with a dynamic payload. In comparison, the dynamic approach can examine obfuscated variants but often incurs significant runtime overhead when collecting every important malware behavioral data. This paper conducts an exploratory analysis of memory forensics as an alternative technique for extracting feature vectors for an Android malware classifier. We utilized the reconstructed per-process object allocation network to identify distinguishable patterns in malware and benign application. Our evaluation results indicate the network structural features in the malware category are unique compared to the benign dataset, and thus features extracted from the remnant of in-memory allocated objects can be utilized for robust Android malware classification algorithm. 
    more » « less
  4. Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software. 
    more » « less
  5. Internet-of-Things (IoT) devices are vulnerable to malware and require new mitigation techniques due to their limited resources. To that end, previous research has used periodic Remote Attestation (RA) or Traffic Analysis (T A) to detect malware in IoT devices. However, RA is expensive, and TA only raises suspicion without confirming malware presence. To solve this, we design MADEA, the first system that blends RA and T A to offer a comprehensive approach to malware detection for the IoT ecosystem. T A builds profiles of expected packet traces during benign operations of each device and then uses them to detect malware from network traffic in realtime. RA confirms the presence or absence of malware on the device. MADEA achieves 100% true positive rate. It also outperforms other approaches with 160× faster detection time. Finally, without MADEA, effective periodic RA can consume at least ∼14× the amount of energy that a device needs in one hour. 
    more » « less