skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zeolite‐Type Metal Oxalate Frameworks
Abstract While many metal oxalate salts are known, few are known to form zeolite‐type topologies. The construction of zeolite types, especially those with low framework density such as RHO, from linear ligands is generally perceived as less likely, because the 180° metal‐ligand‐metal geometry deviates too much from the established strategy of using ligands with bent coordination geometry (centered around 145°) to mimic the geometry in natural zeolites. We show the general feasibility of using linear ligands for the synthesis of zeolite types by reporting a family of indium oxalate salts with multiple zeolite topologies, including RHO, GIS, and ABW. Of particular interest is the synthesis of a zeolite RHO net with double 8‐rings and large alpha cages, which are highly desirable zeolite features.  more » « less
Award ID(s):
1708850
PAR ID:
10084824
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
9
ISSN:
1433-7851
Page Range / eLocation ID:
p. 2889-2892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fourteen Ag( i ), Au( i ), Ni( ii ), Pd( ii ), and Pt( ii ) complexes with macrocyclic tetradentate N-heterocyclic carbene (NHC) ligands were prepared via reactions between three macrocyclic tetrabenzimidazolium salts and metal precursors. All except two Au complexes were characterized using single-crystal X-ray diffraction. Three different structures, including a trinuclear one containing a NHC–Ag–(H 2 O) moiety and a hexanuclear propeller-like supramolecular assembly, are found for Ag–NHC complexes. Nine complexes of group 10 metal ions adopt square-planar geometry, in which the different ring-sizes of the macrocyclic tetracarbene ligands lead to a variation of metal–carbene bond lengths. π–π stackings are observed between the rigid aromatic benzimidazole rings in the nickel group complexes. 
    more » « less
  2. Efficient oxidation catalysts are critical for advancing technologies such as fuel cells and carbon dioxide reduction Transition metal phthalocyanines, such as zinc phthalocyanine (ZnPC) and zinc perfluorophthalocyanine (ZnF PC) , show promise due to their catalytic potential, despite challenges from aggregation-induced activity loss. This research focuses on synthe sizing ZnPC and ZnF PC within zeolite Na-X (FAU) to leverage the zeolite′s confined environment to prevent aggregation and enhance the catalytic performance. Exptl. methodologies encompass ion exchange and melt synthesis techniques to synthesize Zn PC and ZnF PC within the zeolite matrix. Initial results demonstrate successful synthesis of Zn PC and ZnF PC in/on zeolite CBV780, based on characterization by diffuse reflec tance UV-Vis spectroscopy. To confirm that the phthalocyanines are made within the zeolite rather than on the outside of the zeolite, extensive washing using Soxhlet extraction is used to remove all phthalocyanines formed on the exterior of the zeolite. There are four fluorines in each phthalonitrile mol., and four phthalonitriles make a phthalocyanine, hence there are 16 fluorine atoms in a phthaloc yanine; "hexadecyl fluorophthalocyanine" would be correct, but is a mouthfull; hence perfluor ophthalocyanine. 
    more » « less
  3. Efficient oxidation catalysts are critical for advancing technologies such as fuel cells and carbon dioxide reduction Transition metal phthalocyanines, such as zinc phthalocyanine (ZnPC) and zinc perfluorophthalocyanine (ZnF PC) , show promise due to their catalytic potential, despite challenges from aggregation-induced activity loss. This research focuses on synthesizing ZnPC and ZnF PC within zeolite Na-X (FAU) to leverage the zeolite′s confined environment to prevent aggregation and enhance the catalytic performance. Exptl. methodologies encompass ion exchange and melt synthesis techniques to synthesize ZnPC and ZnF PC within the zeolite matrix. Initial results demonstrate successful synthesis of ZnPC and ZnF PC in/on zeolite CBV780, based on characterization by diffuse reflec tance UV-Vis spectroscopy. To confirm that the phthalocyanines are made within the zeolite rather than on the outside of the zeolite, extensive washing using Soxhlet extraction is used to remove all phthalocyanines formed on the exterior of the zeolite. There are four fluorines in each phthalonitrile mol., and four phthalonitriles make a phthalocyanine, hence there are 16 fluorine atoms in a phthaloc yanine; "hexadecyl fluorophthalocyanine" would be correct, but is a mouthfull; hence perfluorophthalocyanine. 
    more » « less
  4. Neutral metal salts coordinate to the surfaces of colloidal semiconductor nanocrystals (NCs) by acting as Lewis acid acceptors for the NC surface anions. This ligand coordination has been associated with increased emission due to passivation of surface hole traps. Here, variation of the anionic ligands of metal salts is used to study anion effects on metal complex Lewis acidity and surface coordination at CdSe and InP NCs. To resolve dynamic ligand exchange processes, the tetracarbonylcobaltate anion, [Co(CO)4]–, is used as a monoanionic ligand for which IR spectroscopy can readily identify displacement of neutral M[Co(CO)4]x species (M = Cd or In; x = 2 or 3, respectively) upon addition of neutral donor ligands. Notably, although Cd[Co(CO)4]2 is more Lewis acidic than cadmium oleate, the former is more readily displaced from the NC surfaces. Lewis acidity and X-type anion exchange are therefore factors to be considered when performing post-synthetic addition of metal salts for NC photoluminescence emission enhancement. 
    more » « less
  5. Mono-β-diketonate compounds have been fleetingly observed in base metal catalyzed reactions, which are of current interest as alternatives to precious metal catalyzed reactions. Their isolation has been challenging due to synthetic and structural limitations of acac-type ligands, leading to the development of a related NacNac ligand platform. Herein we report the synthesis of a β-diketone capable of kinetically stabilizing relevant catalytic intermediates. Their efficient synthesis requires isolable acyl triflate and lithium enolate reactants. Further, the syntheses of several transmetalation salts are reported and used in transmetalation reactions with a series of late, first-row transition metal compounds (FeII, CoII, NiII, CuI, CuII) of interest in base metal catalysis. In all, a dozen single-crystal XRD structures are reported, among other methods of characterization (i.e., IR, UV–vis, NMR, HRMS). The majority of the compounds present as mono-β-diketonate small-molecule bridged dimers. They serve as effective precatalysts and are accurately modeled by DFT calculations, validating the use of computational methods for determining structures and mechanisms. Their reactivity with various small molecules and solvents is also described. The utility of bis(2,6-dimesitylbenzoyl)methane (L) as a supporting ancillary ligand and a tool for further rational development of this class of ligands is discussed. 
    more » « less