skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Writing in the granular gel medium
Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies.  more » « less
Award ID(s):
1352043
PAR ID:
10085335
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
1
Issue:
8
ISSN:
2375-2548
Page Range / eLocation ID:
e1500655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress–stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate gels at low particle volume fractions demonstrates that stress–stress correlations in these soft materials have characteristics very similar to those in granular solids and can be used to identify force chains. We show that the stress–stress correlations can distinguish floppy from rigid gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures during solidification. 
    more » « less
  2. Patterned deposition and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open-microfluidic patterning method that utilizes surface tension forces to form hydrogel layers on top of each other, into a patterned 3D structure. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in device-regions. After layer gelation and device removal, the process can be repeated iteratively to create multi-layered 3D structures. The use of open-microfluidic and surface tension-based methods to define the shape of each individual layer enables patterning to be performed with a simple pipette and with minimal dead-volume. Our method is compatible with unmodified (native) biological hydrogels, and other non-biological materials with precursor fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose, type I collagen, and polymer–peptide 3D structures featuring asymmetric designs, multiple components, overhanging features, and cell-laden regions. 
    more » « less
  3. Soft materials often display complex behaviors that transition through apparent solid- and fluid-like regimes. While a growing number of microscale simulation methods exist for these materials, reduced-order models that encapsulate the macroscale physics are often desired to predict how external bodies interact with soft media. Such an approach could provide direct insights in diverse situations from impact and penetration problems to locomotion over natural terrains. This work proposes a systematic program to develop three-dimensional (3D) reduced-order models for soft materials from a fundamental basis using continuum symmetries and rheological principles. In particular, we derive a reduced-order, 3D resistive force theory (3D-RFT), which is capable of accurately and quickly predicting the resistive stress distribution on arbitrary-shaped bodies intruding through granular media. Aided by a continuum description of the granular medium, a comprehensive set of spatial symmetry constraints, and a limited amount of reference data, we develop a self-consistent and accurate 3D-RFT. We verify the model capabilities in a wide range of cases and show that it can be quickly recalibrated to different media and intruder surface types. The premises leading to 3D-RFT anticipate application to other soft materials with strongly hyperlocalized intrusion behavior. 
    more » « less
  4. Granular materials produce audio-frequency mechanical vibrations in air and structures when manipulated. These vibrations correlate with both the nature of the events and the intrinsic properties of the materials producing them. We therefore propose learning to use audio-frequency vibrations from contact events to estimate the flow and amount of granular materials during scooping and pouring tasks. We evaluated multiple deep and shallow learning frameworks on a dataset of 13,750 shaking and pouring samples across five different granular materials. Our results indicate that audio is an informative sensor modality for accurately estimating flow and amounts, with a mean RMSE of 2.8g across the five materials for pouring. We also demonstrate how the learned networks can be used to pour a desired amount of material. 
    more » « less
  5. Abstract Direct laser writing (DLW) is an advanced fabrication technique that allows users to create complex 3D microstructures from polymer precursors. These microstructures can be integrated with micro‐electromechanical systems (MEMS) actuators. MEMS actuators provide a convenient platform for interacting with the intricate microstructures, either to characterize their mechanical properties or cause them to deform. Structures are fabricated directly onto electrostatic comb drives and chevron thermal actuators that are produced using a commercial foundry process. By applying a voltage to the MEMS actuators, highly controlled deformation of these microstructures is observed. Mechanical behaviors of microstructures produced with different materials and fabrication conditions are compared. MEMS–DLW integration is a convenient approach to characterizing the mechanics of DLW microstructures and may well lead to a new class of dynamic 3D devices for applications ranging from tissue engineering to imaging. 
    more » « less