For simulation to be an effective tool for the development and testing of autonomous vehicles, the simulator must be able to produce realistic safety-critical scenarios with distribution-level accuracy. However, due to the high dimensionality of real-world driving environments and the rarity of long-tail safety-critical events, how to achieve statistical realism in simulation is a long-standing problem. In this paper, we develop NeuralNDE, a deep learning-based framework to learn multi-agent interaction behavior from vehicle trajectory data, and propose a conflict critic model and a safety mapping network to refine the generation process of safety-critical events, following real-world occurring frequencies and patterns. The results show that NeuralNDE can achieve both accurate safety-critical driving statistics (e.g., crash rate/type/severity and near-miss statistics, etc.) and normal driving statistics (e.g., vehicle speed/distance/yielding behavior distributions, etc.), as demonstrated in the simulation of urban driving environments. To the best of our knowledge, this is the first time that a simulation model can reproduce the real-world driving environment with statistical realism, particularly for safety-critical situations.
- Award ID(s):
- 1918531
- PAR ID:
- 10180140
- Date Published:
- Journal Name:
- IEEE International Conference on Intelligent Transportation Systems (ITSC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Vehicle accidents are one of the greatest cause of death and injury in urban areas for pedestrians, workers, and police alike. In this work, we present CSafe, a low power audio-wearable platform that detects, localizes, and provides alerts about oncoming vehicles to improve construction worker safety. Construction worker safety is a much more challenging problem than general urban or pedestrian safety in that the sound of construction tools can be up to orders of magnitude greater than that of vehicles, making vehicle detection and localization exceptionally difficult. To overcome these challenges, we develop a novel sound source separation algorithm, called Probabilistic Template Matching (PTM), as well as a novel noise filtering architecture to remove loud construction noises from our observed signals. We show that our architecture can improve vehicle detection by up to 12% over other state-of-art source separation algorithms. We integrate PTM and our noise filtering architecture into CSafe and show through a series of real-world experiments that CSafe can achieve up to an 82% vehicle detection rate and a 6.90° mean localization error in acoustically noisy construction site scenarios, which is 16% higher and almost 30° lower than the state-of-art audio wearable safety works.more » « less
-
Control barrier functions are mathematical constructs used to guarantee safety for robotic systems. When integrated as constraints in a quadratic programming optimization problem, instantaneous control synthesis with real-time performance demands can be achieved for robotics applications. Prevailing use has assumed full knowledge of the safety barrier functions, however there are cases where the safe regions must be estimated online from sensor measurements. In these cases, the corresponding barrier function must be synthesized online. This paper describes a learning framework for estimating control barrier functions from sensor data. Doing so affords system operation in unknown state space regions without compromising safety. Here, a support vector machine classifier provides the barrier function specification as determined by sets of safe and unsafe states obtained from sensor measurements. Theoretical safety guarantees are provided. Experimental ROS-based simulation results for an omnidirectional robot equipped with LiDAR demonstrate safe operation.more » « less
-
Navigation safety is critical for many autonomous systems such as self-driving vehicles in an urban environment. It requires an explicit consideration of boundary constraints that describe the borders of any infeasible, non-navigable, or unsafe regions. We propose a principled boundary-aware safe stochastic planning framework with promising results. Our method generates a value function that can strictly distinguish the state values between free (safe) and non-navigable (boundary) spaces in the continuous state, naturally leading to a safe boundary-aware policy. At the core of our solution lies a seamless integration of finite elements and kernel-based functions, where the finite elements allow us to characterize safety-critical states’ borders accurately, and the kernel-based function speeds up computation for the non-safety-critical states. The proposed method was evaluated through extensive simulations and demonstrated safe navigation behaviors in mobile navigation tasks. Additionally, we demonstrate that our approach can maneuver safely and efficiently in cluttered real-world environments using a ground vehicle with strong external disturbances, such as navigating on a slippery floor and against external human intervention.
-
Driver assist features such as adaptive cruise control (ACC) and highway assistants are becoming increasingly prevalent on commercially available vehicles. These systems are typically designed for safety and rider comfort. However, these systems are often not designed with the quality of the overall traffic flow in mind. For such a system to be beneficial to the traffic flow, it must be string stable and minimize the inter-vehicle spacing to maximize throughput, while still being safe. We propose a methodology to select autonomous driving system parameters that are both safe and string stable using the existing control framework already implemented on commercially available ACC vehicles. Optimal parameter values are selected via model-based optimization for an example highway assistant controller with path planning.more » « less