skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-App Poisoning in Software-Defined Networking
Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane's integrity. We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.  more » « less
Award ID(s):
1657534 1750024
PAR ID:
10085551
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 ACM SIGSAC Conference on Computer and Communications
Page Range / eLocation ID:
648 to 663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers’ functionality. As control plane decisions are often based on the data plane, it is possible for carefully-crafted malicious data plane inputs to direct the control plane towards unwanted states that bypass network security restrictions (i.e., cross-plane attacks). Unfortunately, due to the complex interplay between controllers, apps, and data plane inputs, at present it is difficult to systematically identify and analyze these cross-plane vulnerabilities. We present EventScope, a vulnerability detection tool that automatically analyzes SDN control plane event usage, discovers candidate vulnerabilities based on missing event handling routines, and validates vulnerabilities based on data plane effects. To accurately detect missing event handlers without ground truth or developer aid, we cluster apps according to similar event usage and mark inconsistencies as candidates. We create an event flow graph to observe a global view of events and control flows within the control plane and use it to validate vulnerabilities that affect the data plane. We applied EventScope to the ONOS SDN controller and uncovered 14 new vulnerabilities. 
    more » « less
  2. null (Ed.)
    Software-defined networking (SDN) has emerged as a flexible network architecture for central and programmatic control. Although SDN can improve network security oversight and policy enforcement, ensuring the security of SDN from sophisticated attacks is an ongoing challenge for practitioners. Existing network forensics tools attempt to identify and track such attacks, but holistic causal reasoning across control and data planes remains challenging. We present PicoSDN, a provenance-informed causal observer for SDN attack analysis. PicoSDN leverages fine-grained data and execution partitioning techniques, as well as a unified control and data plane model, to allow practitioners to efficiently determine root causes of attacks and to make informed decisions on mitigating them. We implement PicoSDN on the popular ONOS SDN controller. Our evaluation across several attack case studies shows that PicoSDN is practical for the identification, analysis, and mitigation of SDN attacks. 
    more » « less
  3. Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, calledScotch, to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotchelastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotchtakes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch. Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotchcan elastically scale up the control channel bandwidth upon attacks. 
    more » « less
  4. The development of reinforcement learning (RL) algorithms has created a paradigm where the agents are trained to learn directly by observing the environment and learning policies to perform tasks autonomously. In the case of network environments, these agents can control and monitor the traffic as well as help preserve the confidentiality, integrity, and availability of resources and services in the network. In the case of software defined networks (SDN), the centralized controller in the control plane has become the single point of failure for the entire network. Reactive routing in SDNs makes such networks vulnerable to denial-of-service (DoS) attacks that aim to overwhelm switch memory and the control channel between SDN switches and controllers. One potential solution to cope with such attacks is to use an intelligent mechanism to detect and block them with minimal performance overhead for the controller and control channel. In this work, we investigate the practicality and effectiveness of a reinforcement learning (RL) approach to cope with DoS attacks in SDN networks that utilize programmable switches. Assuming the existence of a reliable reward function, we demonstrate that an RL-based approach can successfully adapt to the changing nature of attack traffic to detect and mitigate attacks without overwhelming switch memory and the control channel in SDN. 
    more » « less
  5. The development of reinforcement learning (RL) algorithms has created a paradigm where the agents are trained to learn directly by observing the environment and learning policies to perform tasks autonomously. In the case of network environments, these agents can control and monitor the traffic as well as help preserve the confidentiality, integrity, and availability of resources and services in the network. In the case of software defined networks (SDN), the centralized controller in the control plane has become the single point of failure for the entire network. Reactive routing in SDNs makes such networks vulnerable to denial-of-service (DoS) attacks that aim to overwhelm switch memory and the control channel between SDN switches and controllers. One potential solution to cope with such attacks is to use an intelligent mechanism to detect and block them with minimal performance overhead for the controller and control channel. In this work, we investigate the practicality and effectiveness of a reinforcement learning (RL) approach to cope with DoS attacks in SDN networks that utilize programmable switches. Assuming the existence of a reliable reward function, we demonstrate that an RL-based approach can successfully adapt to the changing nature of attack traffic to detect and mitigate attacks without overwhelming switch memory and the control channel in SDN. 
    more » « less